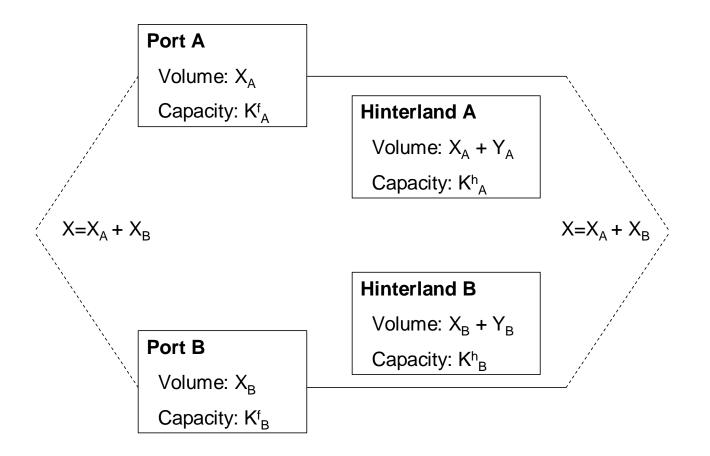
Impact of Hinterland Access Conditions on Rivalry between Ports


Anming Zhang

April 2008

De Borger, Proost & Van Dender (2008)

De Borger, Proost & Van Dender: Main results

- Investment in port capacity reduces prices & congestion at both ports, but increases hinterland congestion in the region where the port investment is made
- 2. Investment in a port's hinterland is likely to lead to more port congestion & higher prices for port use, and to less congestion and a lower prices at the competing port
- 3. Imposing congestion tolls on the hinterland roads raises port capacity investment

- The present paper: Hinterland access conditions → the port and port competition
 - Port congestion & capacity investment abstracted away
 - Bottleneck of the logistics chain shifted to the port/inland interface
 - e.g. hinterland connection; inland transportation

- 2nd objective: Link port competition with corridor capacity & urban mobility
 - Corridor capacity:

Rail connection: Inland terminal (e.g. the Alameda corridor)

Rail competition: Monopoly or oligopoly?

<u>Barge</u>

Border crossing

 Urban mobility: Trucking for final, local delivery <u>Road capacity</u> <u>Road pricing</u>

Model

• Like De Borger, Proost & Van Dender:

Two seaports, labeled 1 & 2, share the same overseas customers and have each a downstream, congestible transport network to a common hinterland

• Unlike De Borger, Proost & Van Dender:

1) Port & its hinterland belong to a single region, ensuring coordination in their decisions

2) Imperfect substitutes: allow both overlapping and captive hinterlands

Total (generalized) cost faced by users:

$$\rho_i = p_i + D_{Ci}(K_{Ci}) + D_{Li}(V_i, K_{Li}) + t_i, \quad i = 1, 2$$
 (1)

- Corridor delay cost falls as the corridor capacity $({\rm K}_{\rm ci})$ increases
- Road used by both cargo shipments X_i and local commuters Y_i , we have $V_i = X_i + Y_i$
- Road delay cost satisfies:

$$\frac{\partial D_{Li}}{\partial V_i} > 0, \quad \frac{\partial D_{Li}}{\partial K_{Li}} < 0, \quad \frac{\partial^2 D_{Li}}{\partial V_i^2} \ge 0, \quad \frac{\partial^2 D_{Li}}{\partial V_i \partial K_{Li}} \le 0$$
(2)

- Increasing traffic volume (V) raises road congestion while adding capacity (K_{Li}) decreases road congestion, and the effects are more pronounced when there is more congestion

Total cost of local road traffic:

$$\rho_{Li}(Y_i) = t_i + D_{Li}(X_i + Y_i, K_{Li}) \qquad i = 1,2$$
(3)

(a) an increase in road toll reduces local traffic;

- (b) an increase in cargo traffic decreases local traffic;
- (c) an increase in road capacity increases local traffic;
- (d) an increase in cargo traffic will, while reducing local traffic, increase overall road traffic.

 Each port's demand depends on both its total cost/and the rival port's total cost?

$$X_1 = X_1(\rho_1, \rho_2)$$
, $X_2 = X_2(\rho_1, \rho_2)$ (5)

• Inverting (5) yields:

$$\rho_1 = \rho_1(X_1, X_2) , \quad \rho_2 = \rho_2(X_1, X_2)$$
(6)

• Using (1) and $Y_i = Y_i^*(t_i, X_i, K_{Li})$, equations (6) can be written as, for i=1,2:

$$p_i = \rho_i(X_1, X_2) - D_{Ci}(K_{Ci}) - D_{Li}(V_i, K_{Li}) - t_i \equiv p_i(X_1, X_2; K_{Ci}, K_{Li}, t_i)$$
(7)

• Each port's revenue as:

$$\pi^{i} = p_{i}(X_{1}, X_{2}; K_{Ci}, K_{Li}, t_{i}) \cdot X_{i} = \pi^{i}(X_{1}, X_{2}; K_{Ci}, K_{Li}, t_{i})$$
(8)

(–)

Main results

- <u>Port competition</u>: Competition between alternate intermodal chains; while hinterland access conditions represented by corridor facilities and by inland roads
- When the ports compete in quantities, an increase in corridor capacity will:
 - a) increase own port's output
 - b) reduce the rival port's output
 - c) increase own port's revenue

Main results (cont.)

- Port competition results in higher level of corridor capacity investment than would be in the absence of competition
- This capacity competition between regions/countries improves social welfare, but the generalized costs are still too high compared to social optimum
- This capacity competition between regions/countries may lead to a <u>Prisoner's Dilemma</u>

Main results (cont.)

- An increase in road capacity may or may not increase own port's output and profit, owing to various offsetting effects
- Road pricing may or may not increase own port's output and profit
- The above over-investment result is weakened if the mode of port competition is <u>in prices</u>

Further research

1. Empirical work:

a) Which model of competition is "correct" for ports?

- <u>Cournot</u>: Firms (here, ports) commit to quantities, and prices then adjust to clear the market implying the industry is flexible in price adjustments, even in short run
- <u>Bertrand</u>: Capacity is unlimited or easily adjusted in the short run.
- Some industries behave like Bertrand and others Cournot; as such, which model of oligopoly is applicable to a particular industry (here, the port industry) is of an empirical question

b) Empirical test of the theoretical predictions:

Hard given lack of data

c) Correlation of annual container throughput growth (market share, respectively) and changes in urban area mobility – LA/Long Beach, 1995-2006

	Total delay (person-hrs)	Delay per peak traveler (person-hrs)	Travel time index	Total congestion cost (\$)	Congestion cost per peak traveler (\$)
LA+LB container throughput growth	-0.683* (0.029)	-0.649* (0.024)	-0.716* (0.020)	-0.684* (0.029)	-0.642* (0.045)
LA+LB container market share	-0.414	-0.353	-0.301	-0.405	-0.367
	(0.235)	(0.318)	(0.398)	(0.246)	(0.297)

Oakland

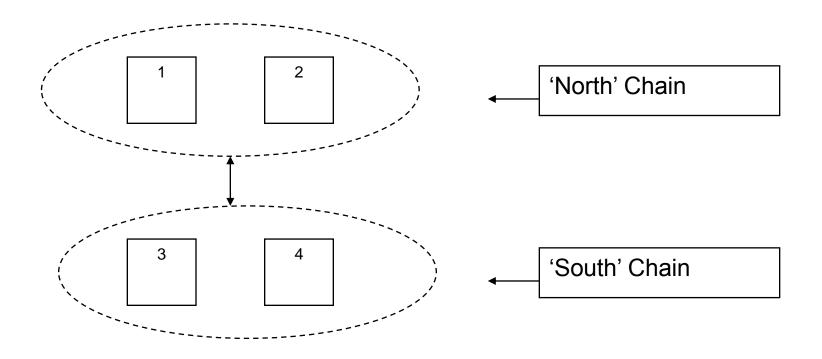
	Total delay (person-hrs)	Delay per peak traveler (person-hrs)	Travel time index	Total congestion cost (\$)	Congestion cost per peak traveler (\$)
Throughput	0.368	0.426	0.449	0.461	0.478
growth	(0.295)	(0.220)	(0.193)	(0.180)	(0.163)
Market share	0.198	0.243	0.301	0.355	0.401
	(0.584)	(0.500)	(0.398)	(0.314)	(0.251)

Portland

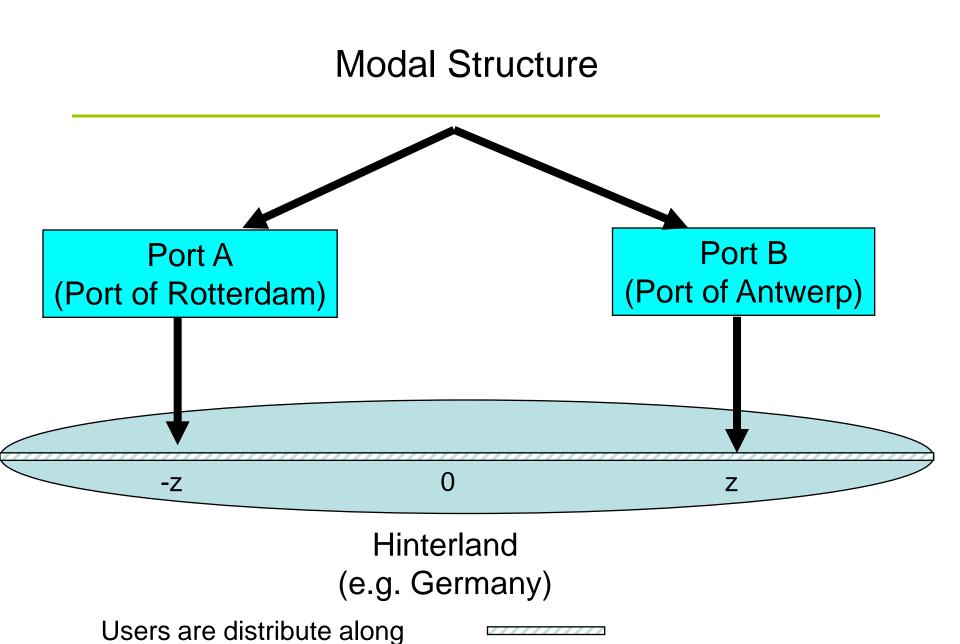
	Total delay (person-hrs)	Delay per peak traveler (person-hrs)	Travel time index	Total congestion cost (\$)	Congestion cost per peak traveler (\$)
Throughput	0.164	0.019	0.062	0.039	-0.131
growth	(0.650)	(0.959)	(0.864)	(0.914)	(0.718)
Market share	0.144	0.016	0.103	0.022	-0.154
	(0.692)	(0.965)	(0.777)	(0.951)	(0.671)

Seattle

	Total delay (person-hrs)	Delay per peak traveler (person-hrs)	Travel time index	Total congestion cost (\$)	Congestion cost per peak traveler (\$)
Throughput	0.201	0.244	-0.103	0.210	0.242
growth	(0.577)	(0.498)	(0.778)	(0.561)	(0.501)
Market share	0.165	0.204	-0.126	0.181	0.216
	(0.648)	(0.571)	(0.729)	(0.616)	(0.549)


2. Organizational coordination

- For an intermodal chain: port, corridor & road may belong to different, separate organizations
- Each maximizes own interest, which may not be the same as the interest for the entire chain's



Two (potential) functional <u>integration</u> or <u>alliance</u> chains

3. Overlapping & captive hinterlands

- Although the captive hinterlands do not subject to immediate competition, they play an important role in port competition
- How?
 - If both the overlapping and captive markets are considered, important interactions between the two markets & their impact on port competition need to be analyzed
 - This involves an explicit derivation of <u>demand functions</u>

