

Shared Automated Vehicles: Review of Business Models







Adam Stocker and Susan Shaheen, PhD TSRC, UC Berkeley



UNIVERSITY OF CALIFORNIA Berkeley Transportation Sustainability RESEARCH CENTER

# Overview

- Introduction
- Current Shared Mobility Business Models
- Shared Mobility + Automation Developments
- Potential SAV Business Models (w/ high/full automation)
- Potential SAV Service Models (w/ high/full automation)
- Possible SAV Impacts
- Conclusion
- Acknowledgements

## Introduction

- Over 30 companies worldwide developing AV technology
- Highly automated vehicles are coming, not an "if" but "when" and "how"
- Shared + Automated Vehicles (SAV) concept gaining traction
- What SAV business models might emerge?
- Review of existing shared mobility services



### **Current Shared Mobility Business Models**

**Peer-to-Peer** 

Service

Models (P<sub>2</sub>P)

**P2P** Carsharing

Business-to-Consumer (B2C)

- Carsharing
- Bikesharing
- Scooter Sharing
- Microtransit

• Hybrid P2P-Traditional Carsharing

- Fractional Ownership
- P<sub>2</sub>P Marketplace
- Ridesharing

Models Ridesourcing/

**For-Hire** 

Service

- Ridesourcing/ TNCs
- Taxis/E-Hail
- Courier Network
   Services (CNS)

## Business-to-Consumer (B<sub>2</sub>C) Service Models

### **Carsharing:**

Allows access to vehicles owned by carsharing companies as part of a shared fleet on an as-needed basis. Includes roundtrip and one-way carsharing.



© UC Berkeley, 2016

## Business-to-Consumer (B<sub>2</sub>C) Service Models

### **Microtransit:**

Service that employs shuttles or vans to pick up passengers with fixed route/schedule or flexible route/schedule, depending on the service



# Peer-to-peer (P2P) Service Models

### **P2P** Carsharing

Service that employs privately-owned vehicles made available for shared use by an individual or member of a P2P carsharing company



# Peer-to-peer (P2P) Service Models

### **Fractional Ownership**

Multiple individuals lease a vehicle, and each pay a portion of the expenses for access to the shared vehicle





# Peer-to-peer (P2P) Service Models

### Ridesharing

Service that facilitates shared rides between drivers and passengers with similar origins and/or destinations





# **For-Hire Service Models**

### **Ridesourcing/TNCs:**

Service that allows passengers to connect with and pay drivers who use their personal vehicles for trips facilitated through a mobile application





## Shared Mobility + Automation Developments

- SAV pilots are small-scale at present
- Uber in Pittsburgh
- nuTonomy in Singapore
- EasyMile, CityMobil2, Olli





### Shared Mobility + Automation Developments



Bloomberg, 2016



## Potential SAV Business Models (w/ high/full automation)

- Putting futurist glasses on...
- Assumptions:
  - Level 4 or higher AVs
  - ODD = most public roads in a given city or metro area
  - Can legally operate unmanned



### **Shared Mobility Lines Begin to Blur**

### Non-automated shared mobility business models



Highly/fully-automated SAV business models

- For-Hire service model blurs into B2C/P2P assuming high/full automation (no longer "hire" someone)
- Carsharing vs. pooling considering automation

# Potential SAV Business Models (w/ high/full automation)

• Two main aspects define SAV business models:

### 1) Vehicle Ownership

- Business/Entity (B2C)
- Individuals (P2P)
- Hybrid Business/Individuals (B2C/P2P)



### 2) Network Operator

- Network operator controls fleet-level decisions
- Same entity owns and operates or not



## Potential SAV Business Models (w/ high/full automation)

| Vehicle<br>Ownership  | Business (B2C)                                                                                                    | Individuals (P2P)                                                                                          | Hybrid<br>Business/<br>Individuals<br>(B2C/P2P)                                                                                 |
|-----------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Network<br>Operations | <ul> <li>Same entity<br/>owns and<br/>operates</li> <li>Different<br/>entity owns<br/>and<br/>operates</li> </ul> | <ul> <li>Third-party<br/>entity operates</li> <li>Decentralized<br/>peer-to-peer<br/>operations</li> </ul> | <ul> <li>Same entity<br/>that owns<br/>(some)<br/>vehicles<br/>operates</li> <li>Third-party<br/>entity<br/>operates</li> </ul> |

# **B2C with Single Owner-Operator**

**Vehicle Ownership:** Business/Entity (B<sub>2</sub>C) **Network Operator:** Same entity owns and operates

SAV fleet that is both owned and operated by the same organization

Example: B2C carsharing



### **B2C with Different Entities Owning and Operating**

**Vehicle Ownership:** Business/Entity (B<sub>2</sub>C) **Network Operator:** Different entity owns than operates

 SAV fleet with different owner than operator where two or more companies partner to provide services

Example: GM-Lyft partnership



# P2P with Third-Party Operator

**Vehicle Ownership:** Individually-owned (P2P) **Network Operator:** Third-party entity operates

- Individually-owned SAV network, with a third-party entity controlling network operations
- Example: 'Tesla Network,' P2P carsharing



# P<sub>2</sub>P with Decentralized Operations

**Vehicle Ownership:** Individually-owned (P<sub>2</sub>P) **Network Operator:** Decentralized peer-to-peer operations

 Individually-owned SAV(s) where operational aspects are not controlled by any one centralized third party and are instead decided upon by groups of individual owners

Example: Arcade City, fractional ownership



# Hybrid Ownership with Same Entity Operating

**Vehicle Ownership:** Hybrid Business/Individuals (B2C/P2P) **Network Operator:** Same entity that owns (some) vehicles operates

 Entity-owned SAV fleet that also may comprise of individually-owned AVs that join the network as-needed

**Example:** Ridesourcing/TNC mixed-ownership fleet



### Hybrid Ownership with Third-Party Operator

**Vehicle Ownership:** Hybrid Business/Individuals (B<sub>2</sub>C/P<sub>2</sub>P) **Network Operator:** Third-party entity operates

 Third-party that does not own SAVs themselves comprised of both individually-owned and entity-owned AVs on a shared network of vehicles which they operate

**Example:** Getaround/City CarShare recent partnership in Bay Area



### Potential SAV Service Models (w/ high/full automation)



- SAV Business Models Partially Influence Service Models via Vehicle Types Available
- "Micro-sized" (1 or 2 pax) vehicles could become more commonplace



## **SAV Framework Limitations**

- Many business/service models might emerge even in a single city or metro area
- Transition period of mixed SAV/non-AV fleets
- Some business/service models may become more dominant than others
- Depends on many factors, including: automation price and availability, regulation, land-use context, etc.



# **Possible SAV Impacts: Opportunities**

- Increase vehicle occupancies
- Reduce per mile cost (over privately-owned vehicles)
- Unlock urban space dedicated to parking
- Downsize number of privately-owned household vehicles
- Reduce GHG emissions





# **Possible SAV Impacts: Challenges**

- Increased VMT / induced demand
- Will people give up private ownership?
- Increased urban sprawl
- Congestion solved?





## Conclusion

- SAVs have the potential to fundamentally change the transportation industry
- SAV impacts are uncertain at this time
- Business models, travel behavior preferences, and public policy are key components to SAV development



# Acknowledgements

- Carlin Liao, Adam Cohen, and Elliot Martin, TSRC, UC Berkeley
- Tom Voege of ITF-OECD for providing valuable feedback on the roundtable paper
- Special thanks to the worldwide shared mobility operators and experts who make our research possible



<u>www.tsrc.berkeley.edu</u> <u>www.imr.berkeley.edu</u>