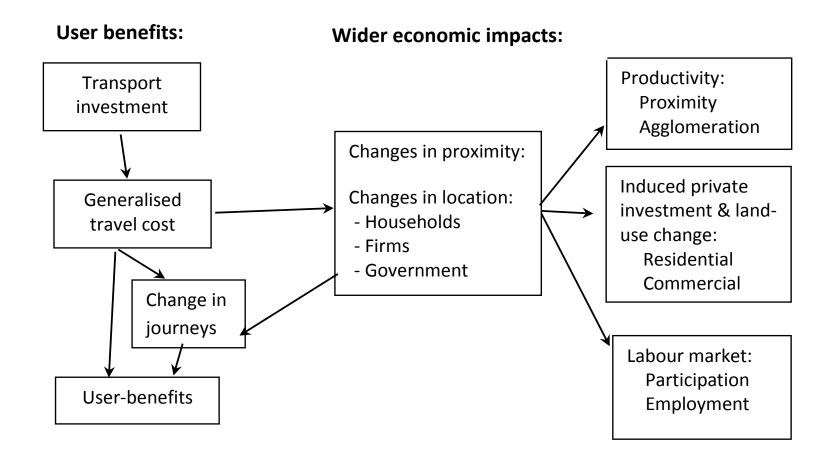
Incorporating wider economic impacts with cost-benefit appraisal:

Tony Venables


Dept of Economics, University of Oxford

Wider economic impacts:

Motivation:

- Standard user-benefit approach to CBA
 - Any changes beyond the direct benefits are of zero value
- Transport is fundamental in shaping economic performance
- Formalise and capture the arguments in a way that imposes the discipline of rigorous economics
- Engage fully with other stakeholders
 - Who measure GVA not welfare (inappropriately)
 - Who care about spatial distribution of effects (legitimately)
- Approach
 - Integrate the strategic and the economic cases for a transport project
 - Recognise that induced quantity and GVA changes are of interest....even if they don't lead to welfare gain
 - Identify and measure the wider benefits... and reduce to one-dimensional value
 - Do so in manner that is feasible, proportional, and transparent.... and not excessively dependent on running large models.

Wider economic impacts

For each of these:

- Mechanisms and narrative: is the effect relevant to a particular project?
- Social valuation of change: real gain or transfer? to whom?
- Quantification: is there a well-grounded methodology?

I: Productivity: proximity and agglomeration

Mechanism: Transport enables connectivity

Thick product and labour markets enable scale and specialisation

- Matching workers and jobs
- Firm scale and intense competition
- Incentive to acquire specialist expertise

Social value:

- Raises productivity:
 - NB: beyond the direct effect of increased productivity of e.g. truck/ driver and consequent reorganisation of logistics (= user benefit, captured by `rule of half')
- Underlying market failures from reciprocal externalities, increasing returns to scale (i.e. specialisation is limited by the size of the market).

Quantification:

2-step methodology for establishing productivity effects of transport improvement:

Transport \rightarrow access to economic mass = $\Sigma_j f(d_{ij}) Emp_j \rightarrow \text{productivity}$: (effective density)

I: Productivity: proximity and agglomeration

Quantification 1: access to economic mass = $\Sigma_j f(d_{ij}) Emp_j \rightarrow \text{productivity}$:

Econometric evidence:

•	Evidence base: data from areas/ firms/ individuals.	elasticity
•	Elasticity of productivity w.r.t. city size/ access to mass:	0.02 - 0.04
•	Varies across sector (higher in tech, business services):	
•	Controlling for occupational composition/ skills:	0.03 - 0.05
•	Controlling for unobservable personal attributes	0.02 - 0.01
	(i.e. individual fixed effects, identification from individual moves):	

Issues:

- Spatial range?
 - Travel to work area?
 - Wider area, e.g. 'Northern power-house'
- Attribution to particular transport mode?
- Appropriate controls?
 - Skills intrinsic to people or depend on jobs that are accessible?

I: Productivity: proximity and agglomeration

Quantification 2: Transport improvement \rightarrow access to economic mass = $\Sigma_i f(d_{ij}) Emp_i$

Forecasting: source of information?

- Static clustering':
 - Change d_{ij} : Even if nothing moves, activities become effectively closer
- 'Dynamic clustering':
 - Change *Emp*_i: Relocation in response to the transport improvement.
 - Locally: Capacity/ design of project
 - Nationally: Requires modelling?
 - Inter-city links
 - · Displacement? Highly context specific

Conclusion:

- Reasonably robust evidence on parameters
- Forecasting: context specific, but does not necessarily require full modelling exercise

Mechanism: Transport enables better use of land

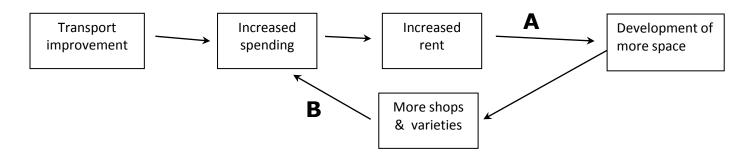
Two examples:

- Dependent residential development
- Large scale retail (or office) development

Social value:

- If initial position sub-optimal
- Expansion of activity brings benefit > cost

i) Dependent residential development


- Transport improvement opens up area for residential development
- Initial planning restriction is relaxed
- Value is user-benefit (rule of half) + element related to price-cost gap (P_C).

$$\Delta W \approx RoH + \{Q_1 - Q_0\}x\{P_C_1 + P_C_0\}/2.$$

 $RoH = -\Delta t\{Q_0 + (Q_1 - Q_0)/2\}$

- NB: Planning controls might be tight.... but optimal given externalities etc
- NB: Both planning change and transport improvement are necessary (but not sufficient) so no way of allocating ΔW between the two policies
- NB: ΔW on new land area equal to land value uplift only if elasticity of demand = ∞ , i.e. no price change passed on to consumers.

ii) Large scale retail (or office) development

Capture idea of places becoming more 'attractive'

......and displacement effects elsewhere.

Two sources of sub-optimal development

- **A**) Developer has monopoly power; (supplies sub-optimal amount of space as knows that development will reduce rents paid)
- B) Tenants (retailers) fail to capture all the consumer surplus from the new 'varieties' that they introduce

Large scale retail (or office) development (continued)

Two sources of sub-optimal development

- **A**) Developer has monopoly power;
- **B**) Shops don't capture all the consumer surplus.

'Wider benefit' if *either* A *or* B, *and* less than 100% displacement from other retail locations.

A: Price-cost wedge due to monopoly power

$$\Delta WA \approx \{Q_1 - Q_0\}P_C = \Delta \text{space x P}_C = \Delta \text{space x rent }/\eta$$

• **B**: captures idea that location becomes more attractive:

$$\Delta$$
WB $\approx \Delta$ consumer surplus = $(\Delta$ expenditure)/ $(\sigma - 1)$

• $\Delta W \approx RoH + \sum \{ \Delta WA + \Delta WB \}$

Displacement handled by summing over all places.

NB: Completely different from land value uplift

Large scale retail (office) development (continued)

- This provides the basis for a workable methodology
- NOT derived from an 'attractiveness' shift in the demand curve
- Derived from expected changes in sales at each place and
 - Price-cost gaps
 - Ratio of consumer surplus to expenditure (simplest case, $1/(\sigma 1)$)
- -- grounded in numbers that are subject to commercial test.
- Completely analogous example with office development & change in attractiveness due to agglomeration benefit to firms occupying offices.

III: Labour market: labour force participation

Mechanism: Transport increases labour force participation

- Better access to jobs/ job search
- Mitigates discouraged worker effect
- Move to better jobs

Social value:

- Positive value if tax wedges → barriers to work
 - Income tax
 - Benefit withdrawal
- ΔW≈ RoH + {pre-tax wage post-tax wage}.Δemployment
 - ≈ RoH + change in tax revenue

III: Labour market: employment & unemployment

Mechanism: Transport creates jobs (reduces unemployment).

- Induced investment → job creation
 - Locally
 - Nationally

Social value:

- Wage > 'shadow price of labour'
- DISPLACEMENT
 - 100% displacement if economy at 'natural rate' of unemployment
 - 100% the benchmark for long-run project?
 - → No value from job 'creation' unless social value of a job varies across place

Conclusion:

- Context specific case for valuing participation effects (≈ tax revenue)
- Job creation: valuable only if regional case is made

Forecasting the quantity changes

Is it possible to forecast the quantity changes?

Under what circumstances do we need models (CGE, LUTI)?

- Local effects:
 - Information from project design, capacity, traffic forecasts
 - Associated commercial case (office space, retail capacity etc.)
- National effects:
 - Need to know changes elsewhere only if these are subject to the imperfections that create wider benefits (costs)

Forecasting the quantity changes

	So Local project information	cope of appraisal Wider modelling (SCGE, LUTI)
User-benefits	- Direct user-benefits	No: (changes are of zero value)
Productivity	Static clusteringDynamic clustering:	No: (changes in 'distance' given employment) No: If employment change determined by project design/ capacity. Yes: If likely displacement of activities with agglomeration potential
Investment & land-use change	- Residential - Commercial:	No: (constrained elsewhere) No: If activity change determined by project design/capacity. Yes: If likely displacement of activities with similar market failures
Employment	- Participation & better jobs- Unemployment	No: (local effects only) Yes: If regional distribution is of interest If national displacement < 100%

Forecasting the quantity changes

Many cases can be handled by modular approach

- Add up user-benefits and wider effects
- 'Bottom-up' approach:
 - local knowledge
 - Sector specific estimates of displacement

Where modelling is undertaken

- Needs to capture the strategic arguments: tailor to the context.
- Simple targeted models better than large black box
- Use scenarios ---

Concluding comments

- Capture idea that transport brings benefits over and above user-benefit
- Incorporate changes in location attractiveness
 - To producers: agglomeration
 - To consumers: 'variety' and choice
 - Other effects.... Coordination failures of various types?
- Ground firmly in tradition of applied welfare economics
 - Identify the market failure and build up.
- Evidence base
 - From evaluation of previous transport improvements?
 - Important but: identification/ endogeneity/ generalisability
 - From researching the key parameters
- Application
 - Context specificity: link strategic and economic case
 - Toolkit that does not always require large scale modelling
 - Base on variables that are observable and parameters that are well-researched.
 - Transparency: need for appraisal to be comprehensible and hence inform public debate.