

Addressing risk and uncertainty in long-term PPP contracts

June 22, 2018, Paris

Alexander Galetovic, Universidad de los Andes

Working Group Papers, International Transport Forum, 2018

- 1. Makovšek, D., "Mobilising Private Investment in Infrastructure: Investment De-Risking and Uncertainty"
- 2. Vasallo, J. M., "Public-Private Partnerships in Transport: Unbundling Prices from User Charges"
- 3. Engel, E., R. Fischer and A. Galetovic, "Dealing with the Obsolescence of Transport Infrastructure in Public-Private Partnerships"

Idea 1: private participation in transport infrastructure is modest

Total and PPP investment in road and rail infrastructure in OECD7* countries (1995-2014, in USD million 2005 prices)

Source: Makovsek (2018)

isport rorum	Total	Private						
	(1) Públic+ private	(2) PPP	(3) Project finance	(4) Corporate				
Transport	1,040	[45–75]	_	nd				
Airports	80							
Seaports	110							
Rail	400							
Roads	450							
Social infrastructure	490	[12–20]	_	na				
Water & sanitation	160		_	na				
Oil & gas	200	[2 5]	na	na				
Electricity	810	[3-5]	[140–160]	na				
Telecommunications	300		[42–48]	na				
Total	3,000							
Total private	1,000	[60–100]	[180–220]	[680–760]				
World GDP (2010)	63.000							

Idea 2: PPPs have worked well in seaports and airports; less so in roads and rail

PPP performance in transport infrastructure

- Seaports and airports (≈ 20 percent of total transport infra spending)
 - Drewry database: 252 landlord container ports (2014)
 - PPIAFF database: 141 private/concessioned airports (2014)
 - Private investment accomodated massive increases in capacity & trade
- Rail, roads, tunnels and bridges (≈ 80 percent of total transport infra spending)
 - Small participation in general, and concentrated in a few countries
 - Contracts are often renegotiated

Idea 3: risk and insufficient funding are different problems

-Funding: who will pay for the project (users/tolls; taxpayers/budget; a combination → see Vasallo)

–**Risk**: unpredictable variation in total project value (Revenues – Costs): you don't know which outcome will realize

Idea 4: the key question about a risk is: can some party do something about it?

The answers

- Yes (endogenous risks)
 - Make good outcomes more likely, and bad oucomes less likely
 - De-risking: invest/spend to clarify what the risk is about or reduce the magnitude of the unpredictable variation
 - The questions: (i) who should be responsible for the risk; (ii) what do you get in exchange for the risk transfer
 - No (exogenous risks):
 - Who is best suited to bear/spread the risk?
 - The party that bears exogenous risk "sells" insurance
 - The question: who should sell insurance to whom?

Idea 5: thoughtful risk allocation is a derisking strategy by itself

An example: demand risk in ports and roads

- <u>Seaports</u>: quality & speed of service can affect demand for the port dramatically → substantial part of demand risk is endogenous → let the PPP bear demand risk
- <u>Roads</u>: largely exogenous once road is available
 → should the government "buy" or "sell" insurance?

Fixed term PPPs create demand risk (\$600)

Year	1	2	3	4	5	6	7	8	9	10	11	12
High demand $(p = 0.5)$	100	100	100	100	100	100	100	100	100	100	100	100
Low demand $(p = 0.5)$	50	50	50	50	50	50	50	50	50	50	50	50
Expected traffic	75	75	75	75	75	75	75	75	75	75	75	75

Roads and demand risk

- Hard to think that PPP investors are in the insurance business (SPV + capital market?)
- Government can spread risk among taxpayers
- Private infrastructure (terminals, pipelines) use takeor-pay contracts
- Lot's of renegotiations because demand was too low

An availability contract (\$600)

Year	1	2	3	4	5	6	7	8	9	10	11	12
High demand $(p = 0.5)$	100	100	100	100	100	100	100	100	100	100	100	100
Low demand $(p = 0.5)$	50	50	50	50	50	50	50	50	50	50	50	50
Expected traffic	75	75	75	75	75	75	75	75	75	75	75	75

A Least-Present-Value-of-Revenues contract (\$600)

Year	1	2	3	4	5	6	7	8	9	10	11	12
High demand $(p = 0.5)$	100	100	100	100	100	100	100	100	100	100	100	100
Low demand $(p = 0.5)$	50	50	50	50	50	50	50	50	50	50	50	50
Expected traffic	75	75	75	75	75	75	75	75	75	75	75	75

Idea 6: the government has more and better options if the road PPP doesn't bear demand risk

- PPP revenues and bids are tied to investment, not user demand, and fixed at the beginning of the concession
- A buyout call option is easier to value (Total Extant Revenues); the government can retain flexibility without expropriating
 - –Option to revamp the infrastructure
 - –Option to bear obsolescence risk
- Separation of tolling and funding of PPPs: a road fund which pools availability-based contracts (Vasallo's proposal)

Thank you!

