

### The role of AI in the mapping of dangerous locations on the road network ITF reports on Data-Driven Transport Safety and Best Practice for Urban Road Safety

Alexandre Santacreu ITF roundtable, 10-12 February 2021







### **Safer City Streets** the global traffic safety network for liveable cities







### **Rotterdam's road safety model**





### **Rotterdam's road safety model**





## **300+ variables per road section / junction**

| Infrastructure  | Road design: road width, curvature, max speed, road type, etc.<br>Road objects: light poles, traffic bumps, traffic islands, etc. |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Usage/behaviour | Traffic intensity, actual speeds driven, hard braking, etc.                                                                       |
| Surroundings    | Demography, vehicle ownership, shops, schools, etc.                                                                               |
| Subjective      | Reports from citizens                                                                                                             |



## Hyden's safety pyramid





# Paris cyclist hard braking events (GeoVelo)



SEE.SENSE \\ CYCLING TECHNOLOGY

# **ROAD CONDITIONS MAPPED ACROSS THE CITY**

Our road conditions data strongly correlates with visual, on site, inspection - highlighting areas of road roughness which may be detrimental to the experience of cycling in the city.

#### \\ CLUSTER MAPS OF ROUGH ROADS

#### **\\ CORRELATION WITH POTHOLES**



## Speed mapping and monitoring







Hot spots of speeding events



#### Top 2% of braking events







Street lighting

Pedestrian footpath both sides

Pedestrian fencing

No pedestrian crossing facility

Straight horizontal curvature

Good road surface condition





### **Surrogate safety metrics: Key benefits**

• **Identify** and **fix** problems before serious harm happens

• Evaluate benefits of an intervention within days, not years!



## Conclusions

- Automatic data collection is possible through instrumented floating vehicles and/or smartphones reporting information along the way.
- Active safety systems can also be considered among surrogate safety metrics (e.g. ABS, ESP, AEB).
- Conduct research on the validation of surrogate safety metrics

International **Transport Forum** 



New Directions for Data-Driven Transport Safety



Corporate Partnership Board Report



# Thank you

### Alexandre.Santacreu@itf-oecd.org



