

Enabling Micromobility's Full Potential through Good Regulation

Presentation by Sebastian Schlebusch, Dott Roundtable on Micromobility, Equity and Sustainability 17-19 March 2021

Enabling micromobility's full potential through good regulation

OECD/ITF Roundtable Discussion

19th March 2021

dott

Enabling Micromobility's full potential through regulation

Today's agenda

The users' perspective A The operators' perspective B The public perspective C Aligning the objectives (D)**Recommendations to achieve key objectives** B

Dott, the trusted European operator

Dott is a European, sustainable and responsible micro-mobility operator

Facts about Dott:

- 16 European cities
- 30,000 live scooters every day
- 300,000+ monthly riders
- Carbon neutral on every ride
- Profitable on every ride

We're known for:

- E-scooters and e-bikes (soon)
- 100% in-house operations
- Full transparency to cities
- Environmental responsibility: we repair everything, we do not throw away anything, we recycle everything we can not repair.

🛆 The users' perspective (1/2)

Main drivers to use our services⁽¹⁾

Efficiency

- Time saving, especially for short-medium trip lengths (1-5km)
- Driven mainly by free-floating experience

Availability

- 24/7
- Short walking distance to nearest scooter / final destination (see details >>)
- Dott's pledge: An active scooter < 150m max

Pleasure / Fun / Sustainability

- Especially for younger cohorts (18-24, 25-34)
- Belonging to innovative, modern community

(1) Dott's internal user research (09/2020), online survey across 4 markets (France, Belgium, Germany, Italy), 717 respondents

Further insights on willingness to walk

Share of e-scooters users ready to walk...

Norwegian Institute of Transport Economics (TØI) (2021)

Enabling Micromobility's full potential through regulation The users' perspective (2/2)

Main barriers to use our services⁽¹⁾

Perceived high price

- Typical cost per trip (w/o discounts): €2.50-3.50
- Immediate exposure to full mobility cost (non-subsidised)

Limited service area/ accessibility

- Focus on urban centres or areas of minimum certain density
- Excluding areas with bad public transport

Feeling unsafe

- Lack of dedicated cycling infrastructure
- Speed differences with car traffic when riding on roads
- Riding on poorly maintained roads

(1) According to Dott's internal user research (09/2020), online survey across 4 markets (France, Belgium, Germany, Italy), 717 respondents

Enabling Micromobility's full potential through regulation B The operators' perspective (1/2)

Market segments - the micromobility pioneers

Meet the "no car" students

- 18-25 yrs old
- Male (63%) and female (35.6%)
- Live within the city limits (65.5%)
- Student (61.5%) or full time worker employee (20.0%)
- 80% do not own a car
- 68.1% have a subscription to public transport

Meet the "young workers"

- 25-35 yrs old
- Male (73.9%) and female (22.6%)
- Live within the city limits (73.4%)
- Full time worker employees (42.9%) or full time worker executives (18.2%)
- 68.8% do not own a car, whilst 24% own one car
- 51.3% have a subscription to public transport

Meet the "male commuter"

- 36-45 yrs old
- Male (78.92%) and female (18.9%)
- Live within the city limits (67.67%)
- Full time worker employees (46.4%) or full time worker executives (24.9%)
- 46.1% do not own a car, whilst 45.6% own one car and 8.2% own more than one car
- 45.6% with a subscription to public transport, 39.4% without

Enabling Micromobility's full potential through regulation B The operators' perspective (2/2)

Main cost drivers of the service

Low density service areas

- Caused by fragmented governance or heavy policy restrictions
- Rule of thumb for suitable density: >1,500 pop/km2

Low scale operations

- Caused by artificially low fleet caps
- Reduced availability for users → less attractive service
- Prevents operational scale economies

Low user uptake

• Driven by barriers to use

Enabling Micromobility's full potential through regulation

C The public perspective (1/2)

Key objectives

Safety for all

- For users
 - Safe hardware, well maintained
 - Best possible rider education
- For non-users
 - No street clutter, orderly and tidy streets
 - No sidewalk riding

Social inclusion / affordability for all

- Low income-tarifs
- Serving underserved areas, esp. the first mile

Sustainability

- Full life cycle considerations, esp. batteries
- Zero-emission operations
- No gig-economy

Enabling Micromobility's full potential through regulation

DAligning the objectives (2/2)

Good regulations address all stakeholders' objectives

User	Operator	Public	Good Regulation
Maximum availability and reliability	Avoiding low scale operations	No street clutter	Demand oriented fleet size with dynamic fleet cap and cap of operators (ex. competitive tender)
Efficiency / time savings	Best user experience for all market segments	Orderly and tidy streetscapes	Parking in dedicated spots , dense, exclusive, mandatory
Affordable trips	Profitability and high user uptake	Low income-tarifs	Subsidize micromobility for low-income citizens
Safe rides	Removing barriers to use and provide best user experience	Safety for all, users and non- users alike, no sidewalk riding	Stimulate better infrastructure , incentivise operators who share insights to improve infra. (ex. better tender score)
Door to door accessibility	Operational efficiency by avoiding low density areas	Serving areas underserved by public transportation	Incentivise expansions of service area (ex. subsidised trips to particular areas)
Sustainability	Good financial results, demonstrated social and environmental impact	full life cycle considerations, zero-emission ops, no gig-economy	Incentivise operators with clear sustainability track record (ex. better tender score)

Recommendations to achieve key objectives

 (\mathbf{C})

Recommendations to achieve key objectives

- Avoiding clutter through optimal fleet size model, selected European cities
- Achieving high parking compliance, supported by infrastructure and technology, example Paris
 - Good parking infrastructure planning for Greater Urban Areas, recommendations tailored to London
 - Industry commitments to sustainability

Optimal fleet size model (1/2): A data-based method to determine appropriate fleet size levels

Approach

Total population

Addressable population

Historical demand

Target fleet density

City-wide suggested cap

Data

- City population
- + Rest of metropolitan area
- + Annual tourist inflow
- Share of 18-65
- Estimated share of city population in suggested service area (based on density)
- Estimated time spent in city by metro area residents (work & leisure)
- Estimated time of year spent in city by tourists
- Historical demand in city per available vehicle vs average demand in other european cities
- Average fleet per 1,000 addressable population in other european cities
- Target fleet per 1,000 addressable population * addressable population

Sources

- Eurostat, National Statistics Offices, Citypopulation.com
- Citypopulation.com
- Dott estimate based on number of metro area pop vs city population & tourists vs population
- Dott analysis based on data from Fluctuo in 4 regulated cities: Paris, Lyon, Rome, Milan
- Based on peak fleet density in 4 cities above
- Based on peak fleet density for selected cities & average fleet density for target cities

Optimal fleet size model (2/2): Results

	Regulations in progress				Existing mature regulated cities				
	Oslo	Madrid	BCN	Dublin	Lyon	Paris	Milan	Rome	
Total population	1.3M + 4.8M tourists	6.6M + 10.4M tourists	5.6M + 12.0M tourists	2.1M + 8.1M tourists	1.9M + 6.5M tourists	12.2M + 30.0M tourists	4.4M + 10.9M tourists	4.3M + 27.0M tourists	
Addressable population	0.4M	1.3M	1.1M	0.45M	0.55M	1.7M	0.7M	1.1M	
Historical demand vs average (2.0)	x1.8	x] (N/A)	x] (N/A)	x] (N/A)	x1.2	x1.1	x1.2	x0.8	
Target fleet density (Per 1000 addressable population; 10.0 average)	17	10	10	10	11	10	11	7	
City-wide suggested fleet size Current city cap	7,100 No cap	12,900 10,000	10,700 closed	5,400 closed	4,500 4,000	15,500 15,000	6,800 6,000	12,000 16,000 ₁₃	

B High parking compliance (1/3), supported by infrastructure and technology, example Paris

Achieving a dense and connected parking network

- Network of 2,500 parking hubs across 81km²
 - \circ ~32 hubs / km²
 - ~102m average distance to the next hub
 - Maximum of 2 min walking distance
 - Dimensions of 1,50m x 2,50-3,0m
 - Capacity of 6 scooters per bay (catering for 15k total)

Guiding principles

- Mainly replacing on street car parking
- Used by all operators
- Marked with a scooter pictogram

• Strong governance

- Central leadership giving ordinance to districts to implement parking bays
- Operators finance the investment through vehicle license fees

Dedicated markings for scooters

Dense network across whole Paris

B High parking compliance (2/3), supported by infrastructure and technology, example Paris

At the end of the ride, the user must park on a designated parking hub. The Dott app guides the user.

Find nearest parking hub

Hit "End ride"

- Check on the app for the closest parking hubs
- We show directions to the closest one

Verify parking compliance before ride actually ends

- We ask for confirmation and for a photo if need be
- Behind-the-scene, a lot of tech, latest GPS, machine learning
- If we have doubts, we automatically dispatch a patroller

Confirmation asked

User takes a photo

Behind the scene, Dott is checking GPS, the photo, recent data about parking in these hubs and evaluates whether properly parked or not

OK, there, let's "End ride"

B High parking compliance (3/3), supported by infrastructure and technology, example Paris

Spring 2019 data: Lime user survey, <u>https://6-t.co/en/etudes/uses-and-users-of-free-floating-e-scooters-in-france/</u> Autumn 2019 data: Dott user survey, <u>https://6-t.co/utilisateurs-trottinettes-dott/</u> Autumn 2020 data: Dott internal parking compliance data

Cood parking infrastructure planning for Greater Urban Areas, recommendations tailored to London

Transferring knowledge from Paris to London⁽¹⁾

• Recommended key planning principles

- Central London: 2 min walking max
- Inner London: 3.5 min walking max
- **Outer London:** max 5 min walking within 10 min riding distance from town centres & metro/railway stations
 - → approx. 5,200 parking hubs across 11 participating boroughs

• Recommended governance

- Neutral governance body including TfL, local boroughs, operators, other key stakeholders
- Consistent design and planning principles across all local authorities
- Dedicated fund to implement
- $\circ~$ Constant performance monitoring

London E-scooter parking hotspots

Sample Central London hub designs

D Industry's commitments to sustainability

Pledge from Dott, Tier and Voi from July 2020⁽¹⁾

10 voluntary commitments covering the full e-scooter life-cycle

Manufacturing

- 1. Using at least 20% recycled material in all new e-scooters from 2021
- 2. Purchasing all new e-scooters with swappable batteries from 2020⁽²⁾

Operations

- 3. No precarious 'gig' work in any market, and committing to living wage standards
- 4. Responsible growth, with no flooding of streets
- 5. Running all warehouses on green energy by end of 2020
- 6. Using only electric vehicles for recharging and maintenance of fleet by end of 2021

 Taking steps to mitigate the risk of e-scooters ending up in waterways and combining resources to retrieve e-scooters from waterways in cities where we are jointly active

End of life

- 8. Never demolishing an e-scooter, and recycling parts that cannot be repaired or reused as spare parts
- 9. Finding second-life solutions for all functioning e-scooters

Throughout the lifecycle

10. Calculating the carbon emissions during the full lifecycle and offset the emissions.

^{(1) &}lt;u>https://www.intelligenttransport.com/transport-news/102774/dott-tier-and-voi-commit-to-higher-e-scooter-standards/</u>

^{(2) &}lt;u>https://ridedott.com/blog/global/why-swappable-batteries-are-the-way-to-go</u>

Thank you!

Sebastian Schlebusch

Head of Market Development / Policy sebastian.schlebusch@ridedott.com +49 1520 7017 095

