

Surveys on safety performance indicators in Switzerland

Steffen Niemann

4th IRTAD CONFERENCE Road safety data: collection and analysis for target setting and monitoring performances and progress

Seoul, 16-17 September 2009

- bfu surveys
- Results
- Methods and practical fieldwork
- Discussion

Timeline of annual bfu-surveys

1962	Seatbelt use drivers
<u>1995</u>	Seatbelt use back seat passengers
<u>1997</u>	Use of child restraint systems (CRS, every 5 years)
<u>1998</u>	Helmet use motorcycles, bicycles
<u>2001</u>	Daytime running lights (DRL)
<u>2006</u>	Seatbelt use front seat passengers

Objectives of surveys

- International comparison
- Regional differences
- Times series

SPIs Switzerland 2009

Indicator	2009	Percentage change 2008
Seatbelt driver	87 %	-1 %
Seatbelt front seat passenger	88 %	-1 %
Seatbelt back seat passenger	68 %	+5 %
CRS (2002/2007)	94 %	+ 11 %
Helmet moped	86 %	+5 %
Helmet motorbikes	100 %	+1 %
Helmet bicyle	38 %	0 %
DRL	61 %	+ 5 %

Seat belt use on urban roads by OECD countries, 2008

Evolution of seatbelt use

Survey methods

- Stratified, two stage clusterdesign
- Precision of estimates depends on:
 - Observed rate
 - Sample size
 - Number of observation sites
 - Variance between observation sites
- Problem of bfu surveys: standard errors

Estimates and standard errors by observation sites

Sampling frame

Cls, assuming SRS and CS

bfu surveys compared to NOPUS*

	bfu	NOPUS
Observation sites (OS)	59	1 865
Total sample size (SS)	30 000	116 000
Ratio SS/OS	500	62
Sampling of sites	Preassigned	Random sample
Observation on sites	Fixed number	Sampling plan

* National Occupant Protection Use Survey, NHTSA

Would you like to survey here?

Practical improvements 2009

Discussion

- Estimates can be improved by increase of observation sites
- Trade off between practical feasibility against methodological claims
- Practical improvements can increase the ease of fieldwork
- Objectives of surveys must be taken into account