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Executive summary 

What we did  

This report assesses the potential of data-driven approaches to improving transport infrastructure 
maintenance. It looks at trends in maintenance strategies, explores how the targeted use of data could 
make them more effective for different types of transport infrastructure, and looks into implications for 
policy. The report builds on discussions held during workshops with members of the International 
Transport Forum’s Corporate Partnership Board.  

What we found 

Maintenance constitutes an inevitable, albeit often invisible, part of countries’ transport policies. 
Increased demand for transport infrastructure accelerates infrastructure’s ageing. The effects of climate 
change further aggravate this. Unsurprisingly, many governments look for transport infrastructure 
maintenance policies that provide better value for money than current practices offer.  

Infrastructure maintenance strategies are gradually shifting towards data-driven approaches. They exploit 
the power of digital technologies, Big Data analytics and advanced forecasting methodologies. Data-driven 
approaches have gained momentum in transport infrastructure maintenance as a result of four 
simultaneous technological innovations.  

First, the development of digital technologies has resulted in the digitalisation of society, industry and 
transport, which facilitates data sharing. Second, computing technologies have provided the necessary 
horsepower for running the digital infrastructure. Third, the Internet of Things and sensor technology have 
increased the potential for automating reporting from sensors that capture and measure new phenomena 
and provide data sets that flow through digital infrastructures. Fourth, artificial intelligence (AI) has helped 
to extract information from vast amounts of data, recognising patterns beyond the capacity of individual 
observation and exploiting digital infrastructure and computing power.  

Policy makers are beginning to leverage these developments in various ways. Data-driven maintenance is 
becoming common in many parts of the transport industry.  

Railroads collect massive amounts of inspection data from different sources using various methods, such 
as track inspection cars and drones that gather data to model track degradation. However, the rail sector 
faces numerous challenges for applying Big Data analysis: a lack of specific data analysis tools, high cost of 
involving stakeholders and heterogeneous data sources. Also, the algorithms currently used to predict the 
wear of rail infrastructure only work under lab conditions.  

For road infrastructure, various automated inspection methods exist. These include vision-based methods, 
laser scanning, ground penetration radar and a combination of these. All are accurate and effective but 
usually costly. As a result, the coverage and collection frequency can prove insufficient for detecting 
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changing road conditions. Several pilot studies have tried to use smartphones to collect data on the state 
of roads to reduce deployment costs for data-driven maintenance.  

At airports, the demand for accurate real-time data has spawned systems that automatically acquire and 
process infrastructure data. Advanced technologies now register when deformities develop on runways. 
They accurately measure moisture levels, temperature, strain and other factors relevant to wear and 
degradation. Several airports have built, or plan to build, concrete pavements with embedded strain 
gauges and other sensors to monitor the stress in the material caused by aircraft. 

Overall, data-driven approaches to infrastructure maintenance promise to enhance fact-based decision 
making and capabilities to predict the remaining useful life of assets. They can also improve cost efficiency 
and environmental sustainability. However, some new challenges need to be addressed, notably for the 
use of AI. AI predicts future behaviour based on historical data. Yet all predictions can prove incorrect 
where events do not follow past trends.  

What we recommend 

Scale up and speed up the deployment of data-driven approaches to transport infrastructure maintenance 

Transport infrastructure maintenance could benefit from a broader and accelerated roll-out of data-driven 
approaches. These could improve the quality of assets, enhance the life cycles and save costs - especially 
when the relevant technologies are well-known, such as sensor technologies. In some cases, more tests 
and pilot projects will be useful, notably where leveraging data technologies for more effective 
maintenance policies poses specific challenges, as is the case of artificial intelligence in the railway sector.   

Update regulation and guidelines for transport infrastructure maintenance to facilitate the introduction of 
more data-driven approaches 

Current regulations and guidelines apply to condition-based maintenance strategies. These may set 
requirements that are ill-adapted to data-driven approaches to maintenance and may hamper their roll-
out. Policy makers should ensure that the policies applied to data-driven approaches do not stifle their 
potential benefits.  

Ensure data-driven infrastructure maintenance approaches follow good practices in data governance 

The use of data in infrastructure maintenance must be in line with privacy protection laws and regulations. 
All data should be anonymised and encrypted. Location and trajectory data should be covered by the most 
robust protection methods, as they create the severest vulnerabilities for citizens. Tools to limit privacy 
risks include non-disclosure agreements between data users and providers, the involvement of trusted 
third parties to conduct the data collection and the development of “safe answers” approaches, in which 
only query results are exchanged instead of raw data. Governments could also broker data-sharing 
partnerships for the purpose of data-driven maintenance, for instance, between data providers and 
infrastructure managers. However, it may want to limit such partnerships to data of public interest and 
require purpose specificity and data minimisation.
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The maintenance challenge 

Transport infrastructure, like all other types of infrastructure, tends to wear, tear, and deteriorate with 
age and use. As it is almost impossible to design a transport infrastructure system that is maintenance-
free, maintenance constitutes an inevitable, but often invisible, part of countries’ transport policies. Often, 
shortcomings in infrastructure design are compensated for with maintenance programmes (Kumar, 2009). 
Maintenance regimes are expected to ensure the performance and functionality for which the transport 
infrastructure assets were designed at the lowest possible costs. Performance can be defined in terms of 
quality, safety and environmental impacts. 

Maintenance is defined as a combination of all technical, administrative and managerial actions during the 
life cycle of an item intended to maintain it in or restore it to a state in which it can perform the required 
function. Maintenance management relates to maintenance requirements, objectives, strategies and 
responsibilities, and implementation of them by such means as maintenance actions. These can include 
actions such as inspection, monitoring, repair and replacement.  

The role of transport infrastructure maintenance has gained importance. Many infrastructures were 
conceptualised, designed and built without much reflection on maintenance requirements. Infrastructures 
are increasingly connected to each other, which means that failure in one infrastructure asset will affect 
the performance of the whole system. In addition, the demand for transport infrastructure has increased 
as more and more people use it. This accelerates the ageing of infrastructure and leads to the increased 
need for maintenance. However, strains on public budgets have often resulted in reductions in 
maintenance budgets. The situation is further aggravated by the effects of climate change bringing 
additional pressures on these infrastructures. Not surprisingly, many governments will be interested in 
transport infrastructure maintenance policies that can provide better value for money. This report 
analyses to what extent data-driven approaches could help to improve the effectiveness of maintenance 
policies in the transport sector.  

Transport infrastructure managers broadly deploy two approaches to maintenance: corrective and 
preventive. Corrective maintenance consists of correcting infrastructure damages or failures1. Preventive 
maintenance aims to reduce the probability of infrastructure assets’ failure and avoid deviations from 
agreed service levels. Corrective maintenance is also known as reactive maintenance, as it is undertaken 
after a defect or failure occurs. This strategy leads to high maintenance costs due to sudden failure and 
system recovery (Figueroa-García et al., 2015).  

A preventive maintenance strategy involves the performance of maintenance activities before equipment 
fails. Preventive maintenance includes scheduled adjustments, major overhauls, replacements, renewals, 
and inspections. It can be carried out either during the system downtime or while the system is in 
operation. Its most significant advantage is that it can be planned in advance and performed when 
convenient (Budai-Balke, 2009). Preventive and conditional maintenance emerged because they could 
provide higher levels of safety and reduce maintenance in comparison with corrective maintenance 
(Fumeo et al., 2015). 
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There are two forms of preventive maintenance: 

• Predetermined maintenance: maintenance action is carried out according to a timeline 
established by a predetermined rule. The action is based either on time (e.g. once every six 
months) or on a measure of usage (e.g. the frequency of certain tonnages, loads, number of 
vehicles, etc.). The predetermined intervals are often established during the design and 
construction of infrastructure and frequently guided by national and international regulatory 
regimes. 

• Condition-based maintenance: preventive maintenance that includes an assessment of the actual 
physical conditions. In condition-based maintenance, there is a measurable parameter that 
correlates with the degradation over time and the onset of failure. Changes in the measurable 
parameter are obtained from data collected using appropriate condition monitoring techniques. 
The two main techniques are direct and indirect measurement. Data-related technologies – such 
as sensor technologies – have been central to the increasing global use of condition-based 
maintenance policies for transport infrastructure.  

Repeated analysis of the parameters of the infrastructure degradation (the condition) and relevant context 
information can help indicate the current physical health of assets (now-casting) and forecast the rate of 
degradation, the future state of the infrastructure and maintenance needs (predictive maintenance). 

Organisations can also use maintenance policies as strategies to gain a competitive advantage in relation 
to the market, reduce downtime, and reduce overall operations costs. A maintenance strategy can help 
reduce costs of transport operations because maintenance represents a sizeable part of the costs of 
organisational assets. Such a strategy would need to reflect the balance desired between corrective and 
preventive maintenance. In addition, transport users want transport that generates the greatest 
satisfaction or the least external damage, for example, the safety of the system. In other words, users are 
willing to change their routes or pay more for an acceptable return. Thus, the cost involved in a 
maintenance operation goes well beyond the internal costs of an operation and may have a direct impact 
on the social welfare of the end consumer (De Souza and Filho, 2020). 

Until the middle of the 20th century, maintenance was simply viewed as an unavoidable cost to be incurred 
after the object was built and put into operation. There was a dramatic change after the Second World 
War. Reliability evolved as a new discipline and the theory of reliability dealt with various aspects such as 
the science of degradation of material and assets; the use of statistical methods to assess reliability and 
related maintenance needs and; mathematical models for predicting the rate of degradation of an asset 
and the importance of preventive maintenance. Investing in preventive maintenance lowers the cost of 
corrective maintenance but results in additional costs. Operational research techniques focussed on 
models to determine the optimal preventive maintenance to achieve a proper trade-off between 
corrective and preventive maintenance.  

The next stage of evolution was the emergence of alternate approaches to the maintenance of objects in 
different industry sectors. Two that have been used extensively across the globe are reliability-centred 
maintenance (RCM), which had its origins in the airline industry, and total productive maintenance (TPM) 
which had its origins in manufacturing. Both have been adopted in modified forms by infrastructure 
managers of several organisations. Advances in technology, such as sensors, data collection, computers 
and communication, have resulted in the evolution of condition-based maintenance (CBM) and e-
maintenance (Karim, 2008; Karim et al., 2016; Ben-Daya, Kumar and Murthy, 2018).  

Maintenance in the 21st century has moved from the trial-and-error approach of the engineers of the early 
20th century to a multi-discipline subject founded on science, engineering and technology. Maintenance 
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engineers and managers now need advanced techniques for failure and maintenance data analysis and 
building models for effective maintenance decision making. Maintenance strategies are gradually shifting 
towards data-driven approaches, exploiting the power of digital technologies, big data analytics and 
advanced forecasting methodologies.  
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Data-driven approaches to maintenance 

Data-driven approaches to transport infrastructure maintenance have gained momentum thanks to four 
simultaneous technological innovations. First, the development of digital technologies has resulted in the 
digitalisation of society, industry and transport, which facilitates data sharing. Second, computing 
technologies have provided society, industry and the transport industry with the necessary horsepower to 
run the digital infrastructure. Third, the Internet of Things (IoT) and sensor technology have increased the 
potential for the automation of reporting from sensors with the capability to sense and measure new 
phenomena. These are provided as data sets flowing through digital infrastructures. Finally, artificial 
intelligence (AI) has helped to extract information from vast amounts of data, recognising patterns beyond 
the capacity of individual observation, and exploiting digital infrastructure and computing power. Hence, 
the data-driven approach is understood here to consist of a complex, fact-based decision-making process 
using digital infrastructures, distributed computing, sensor data, and augmented analytics empowered by 
artificial intelligence.  

Schematically, a data-driven approach to transport infrastructure maintenance consists of: 

• information logistics: the availability and accessibility of data provided through an appropriate 
information logistics that represents the digital infrastructure. 

• analytics: data must be processed, analysed and interpreted to make sense. The emerging 
digitalisation and artificial intelligence technologies are the main approaches to strengthening 
analytics. Analytics can be defined as a knowledge discovery platform through a set of algorithms, 
which are fed by data from the information logistic infrastructure.  

• context-awareness: sensing the context in which a decision will be made, and adapting the 
analytics and information logistics to support the decision-making process. It represents a set of 
situations in which decisions will be made, i.e. the purpose of analytics. 

In data science, these aspects are represented by a set of models such as information models, knowledge 
models, and context models, as depicted in Figure 1. 

Figure 1. Main elements of data-driven approaches in transport maintenance 

 

 Source: Karim et al. (2016). 
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Data can be structured or unstructured. Structured data have a well-defined format that requires close-
ended answers – a choice from a finite set of choices. In contrast, unstructured data are usually in the form 
of a text with no specified set of choices. For analysis, it is necessary to convert unstructured data, such as 
customer descriptions of problems, into structured data. This involves a natural language processing 
technique called named-entity extraction, also referred to as text tagging and annotation. 

Data can generate information and knowledge that are needed to make proper maintenance management 
decisions. Maintenance data can be collected during maintenance actions and come from supplementary 
sources related to the asset, logistics, production and business (Table 1). Data can relate to quantitative 
indicators such as component failure times, component material property, load on the component, etc. 
Information is extracted from data through analysis to understand possible relationships, such as cause 
and effect, between pieces of data. 

Table 1. Maintenance data for transport infrastructure  

Type of data Examples 

Data collected during maintenance actions  Data related to health of infrastructure: condition at inspection 
Data related to maintenance actions: material, labour, costs, etc. 

Asset-related data Detailed drawings, decomposition, failure and censored data, etc. 

Logistics-related data Spare parts, repair-personnel and facilities, component suppliers, etc. 

Production-related data Tonnage moved, output (in the case of production of processing plant) 

Business-related data Service contracts, maintenance costs, etc. 

 

Digitisation encompasses technologies that enable the process of transforming analogue data to digital 
data. Digitisation is necessary to achieve digitalisation, which can be defined as the provision of digital 
services that creates value to its user. Examples of digitisation technologies relevant to transport 
infrastructure are: 

• stationary sensors and detectors: for measurement of wheel geometry, light beam, noise, loads, 
currents, etc. 

• mobile sensors: for measurement of cracks, speed, noise, light beam, temperature, position, fluid, 
weather, navigation, etc. 

Data from these sensors are necessary to enable a data-driven approach in the transport system. In 
addition, a data-driven approach also requires techniques and technologies for data integration, data 
filtering, data processing, and data visualisation. (Karim et al., 2016) 

Digitalisation in any industry depends on the relationship between data, algorithms and models. Data can 
be seen as the fuel that is required to run an engine. The algorithm can be described as the engine that 
transforms one type of energy to another. The model is then the context in which the engine runs. The 
digitalisation of transport means that data points collected by a sensor, human or machine, are used to 
run algorithms that should contribute to fact-based decision making. 

The dynamic and comprehensive information context related to the maintenance of complex technical 
systems with long life cycles emphasises the importance of appropriate information logistics (see Tsang, 
2002; Blanchard, 2004; Muller et al., 2008). The main aim of information logistics is to provide just-in-time 
information to targeted users and optimisation of the information supply process, i.e. making the right 



DATA-DRIVEN APPROACHES TO MAINTENANCE 

12 DATA-DRIVEN TRANSPORT INFRASTRUCTURE MAINTENANCE © OECD/ITF 2021 

information available at the right time and at the right point of location. Solutions for information logistics 
need to deal with:  

• time management: “when to deliver”  

• content management: “what to deliver”  

• communication management: “how to deliver”  

• context management: “where to deliver and why”.  

Frameworks, concepts, methodologies and platforms for the establishment of information logistics related 
to maintenance are often represented by the term e-Maintenance (Karim 2008).  

Artificial intelligence  

Artificial intelligence (AI) is an umbrella term for a set of technologies in which computer systems are 
programmed to model complex behaviour in challenging environments. AI is a major force driving 
innovation today, mimicking human intelligence in computer software. Intelligence can be described as 
the ability to learn from experiences, perceive abstract contexts, cognise, adapt to situations, and act 
(Karim et al., 2016). Hence, AI refers to a set of computer science techniques that allows computer 
software to learn, perceive, cognise and act.  

One of the main approaches to AI is Deep Learning. This refers to interlinked nodes loosely modelled after 
the human brain that can be trained to recognise patterns quickly from data that would overwhelm the 
brain. It has been applied to tasks including detecting leukaemia earlier than human experts, driving cars, 
helping restaurants better predict their food demand, and optimising the logistics processes for global 
retail companies. (Modin and Andrén, 2021) 

From an industrial point of view, AI technologies should be understood as methods and procedures that 
enable technical systems to perceive their environments through context and situation-awareness, 
process what they have monitored and modelled, solve certain problems, find novel solutions never found 
by humans, make decisions, and learn from experience to better manage the processes and tasks put 
under AI supervision.  

Machine learning is one area of artificial intelligence used by industry. Machines need data to learn, either 
large quantities of data for one-time analytical purposes, or streams of data from which learning is 
continuously taking place. Based on data acquired either online or offline, machine learning can reduce 
complexity and detect events or patterns, make predictions, or enable actions to be taken without explicit 
programming in the form of the usual “if-then” routines or without classic automation and control 
engineering.  

AI technologies are expected to increase the efficiency and effectiveness of industrial processes. The 
primary goals are to reduce costs, save time, improve quality and enhance the robustness of industrial 
processes. However, AI is not as well-used in industry as one might expect, given its potential. Integrating 
AI applications into corporate structures and along the entire value-added chain would entail enormous 
changes and high costs. At this point, AI applications tend to be found in the areas of robotics, knowledge 
management, quality control, and maintenance analytics shifting from traditional approaches to predictive 
ones. A good field for AI in maintenance in industrial environments is the analysis and interpretation of 
sensor data, distributed throughout equipment and facilities. IoT, i.e. distributed data suppliers and data 
users capable of communicating with each other, is the basis for this use of AI. IoT acquires the data after 
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pre-processing, records the status of all different aspects of the machines, and performs actions in process 
workflows on the basis of its analysis. Its central purpose is to identify correlations that are not obvious to 
humans and enable predictive maintenance, for example, when complex interrelated mechanical setting 
parameters have to be adjusted in response to fluctuating conditions in the environment to avoid 
compromising the asset’s health.  

Artificial intelligence is also frequently used for data augmentation. This refers to techniques aimed at 
generating new synthetic data sets based on original data sets, e.g. by copying and slightly modifying or 
enriching the features in a data set. For example, a coloured photo can be augmented by generating a 
grey-scaled version of the same photo, and both the photos can then be fed to the AI-engine to increase 
its recognition capability. These techniques are commonly used in the learning phase of AI. 
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Applications of data-driven maintenance in 
transport sectors 

Data-driven approaches to maintenance are emerging in the transport industry. Digital technologies and 
artificial intelligence are used to increase the effectiveness of operations and maintenance. Such data-
driven approaches can support diagnostics, prognostics and health management, perform condition 
monitoring and assessment, risk management, and asset management of infrastructure assets and 
systems. This section covers the data-driven maintenance approaches in different transport sectors.  

Railways 

Various technologies are used to monitor the condition of railway vehicles. These include acoustic bearing 
detectors, hot box detectors (HBD), temperature trending, hot and cold wheel detectors, track 
performance detectors, hunting detectors, wheel impact load detectors (WILD), cracked axle detectors, 
cracked wheel detectors and machine vision. In most cases, defective wheels generate high-impact load 
on the track, which is detected by WILD, as they weigh each wheel several times when the wheel passes a 
detector in a certain distance (Li et al., 2014). Strain-gauge-based technologies are used by WILD to 
measure the performance of a railcar in a dynamic mode by quantifying the force applied to the rail 
(Stratman et al., 2007). Once a train is detected, WILD generates different levels of data including train 
data, equipment data, track data and wheel data (Wang et al., 2018). 

Conditions of railway track can degrade over time, either gradually or abruptly. This can occur due to 
cumulative tonnage, defective wheels, and the impulsive force on tracks. Defects can worsen if no recovery 
action is undertaken. They may finally result in complete rail breakage, which is a major cause of train 
derailment. Railway tracks have two different types of spot defects, namely, track structural defects and 
track geometry defects. Track structural defects occur when the structure and support system of the 
railway tracks fail. This could happen on the rail, ballast, ties system, sub-grade and drainage system. Track 
geometry defects arise due to irregularities in the various track geometry measurements such as profile, 
alignment and gauge (Zarembski, Einbinder and Attoh-Okine, 2016). The presence of structural defects 
such as cracks and track misalignment is a major threat to the safe operation of a railway system. 

Railroads collect massive amounts of inspection data, including service failure data, signal data, ballast 
history, grinding history, remedial action history, traffic data, inspection data, as well as curve and grade 
data (Ghofrani, 2020; Ghofrani et al., 2018). These data are collected in different ways:  

• Track inspection cars are used to detect the defects before they deteriorate. Two common types 
of monitoring cars are ordinary measurement cars, which measure the rail geometry and surface 
deterioration, and ultrasonic inspection (USI) cars, which measure rail breakage and internal 
cracks (Podofillini et al., 2006).  

• Drones have also recently gained popularity for track inspections. Images are usually processed 
from the front camera of the drones (Pall et al., 2014). It is expected that fast image processing 
and analysis will be emerging in drone-based track inspection. 



APPLICATIONS OF DATA-DRIVEN MAINTENANCE IN TRANSPORT SECTORS 

DATA-DRIVEN TRANSPORT INFRASTRUCTURE MAINTENANCE © OECD/ITF 2021 15 

• Track degradation models are used to better predict defects. They can be based either on the 
physical laws describing the behaviour of the asset known as mechanistic models or on data-
driven models, which rely mainly on machine learning algorithms (Fumeo et al., 2015).  

Preventive maintenance on tracks is expensive. Costs include inspection, different types of maintenance, 
track downtime, labour and material, among others. Preventive maintenance becomes worthwhile when 
the cost incurred by device failure is larger than that of preventive maintenance (Chen and Trivedi, 2005). 
Preventive maintenance is expensive when performed too early or too late. 

Researchers have attempted to identify the most cost-effective maintenance policy. In an assessment of 
the track inspection and maintenance policy deployed for railroads in North America, Sharma et al. (2018) 
found that savings can be made by replacing repetitive minor maintenance actions with slightly more 
major maintenance actions. They termed this “optimal policy”. The cost of major maintenance increases 
as the number of major maintenance actions increases. However, repeated minor maintenance on the 
same section of the track decreases, and their costs decrease in kind. The optimal policy is able to remove 
unnecessary minor maintenance. 

  

Box 1. AI Factory for Railways  

The AI Factory for Railways (AIF/R) aims to accelerate digitalisation in railways via a set of cloud/edge-
based data services that provide capabilities such as acquisition, integration, transformation and the 
processing of railway-related data across endpoints.  

AIF/R provides digital pipelines between data providers and data consumers. The platform enables the 
management and sharing of big data among many stakeholders with diversified requirements. AIF/R 
analyses characteristics of advanced analytic technologies such as AI, machine learning and deep learning. 
These capabilities are materialised in a set of interconnected and loosely coupled services that can be 
dynamically orchestrated to adapt to various contexts.  

AIF/R’s technology platform is a service-oriented, scalable environment that enables information logistics, 
including services data acquisition, data filtering, data quality, data transformation, cyber security, data 
processing, and visualisation. These services can be used to support such things as diagnostics, prognostics 
and health management, condition monitoring and assessment, risk management, asset management, 
etc. Furthermore, the platform will enhance the reliability, availability, and sustainability of the railway 
systems, including rolling stock and infrastructure, through the enablement of Industrial AI (IAI).  

IAI is an applied research within AI that focuses on the deployment of Industrial Internet of Things, big data 
and context information in industrial contexts. IAI is explorative to bring insight and understanding of 
industrial phenomena, and it is also conclusive to generate problem-solving findings that are practically 
useful in various industrial contexts such as prescriptive analysis of asset health, diagnostics, and 
prognostics. 

Source: LUT (2019). 

 

There are various challenges for the application of big data analysis in the railway sector: for the moment, 
the sector lacks the specific data analysis tools it needs; it is costly to involve all the required stakeholders 
and; data sources are heterogeneous, ranging from the dynamic conditions of the vehicles, geographic 
information and weather characteristics to results from maintenance tasks. In addition, current algorithms 
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to predict the wearing of rail infrastructure are limited to lab conditions but not applicable to real-life 
conditions (Thaduri et al., 2015).  

Railways are complex technical systems. They have a large number of stakeholders and business models 
that include infrastructure owners, operators, maintenance service providers, consultants, etc. All 
stakeholders need to come to a common understanding of asset health management to implement a 
holistic system approach and strengthen the business competitiveness. The ongoing digitalisation and 
implementation of AI technologies in railway is highly dependent on the availability and accessibility of 
data for a geographically distributed system. An example of a platform for data sharing for the 
implementation of AI technologies in the railway sector is the AI Factory for Railways, developed by the 
Lulea Technical University (Box 1). 

Roads  

Road damage data are traditionally collected via road inspections. The current practice of road inspection 
relies heavily on a manual process. However, the frequency and coverage of such inspections are often 
limited due to budget constraints and workforce shortages. In addition, inspectors might suffer from 
potential evaluation bias and inconsistent evaluation criteria due to the subjective interpretation of 
standards (Ahn, Wang and Du, 2019).  

Various automated road surface inspection methods have been proposed to overcome the limitations of 
manual inspection. Technological solutions that could be applied include vision-based methods, laser 
scanning, ground penetration radar, the natural lighting method and a combination of these (Ahn, Wang 
and Du, 2019; Yu et al. 2007).  

The vision-based technologies aim to collect images of pavement or roads in real-time. Advances in high-
speed camera technology and large-storage hardware have facilitated the collection of pavement images. 
As a result, academia and industry have paid more attention to automatic crack detection through 
pavement image processing, applying different processing methods. For example, they can identify the 
intensity of cracks and detect their edges. Machine-learning techniques have also been used in detecting 
pavement cracks. These methods are based on dividing a pavement image into a number of sub-images, 
each of which is represented by a vector of features extracted from the sub-image. These sub-images are 
then used for the training and classification for crack detection (Zou et al., 2012).  

Laser scanning has been applied to deal with the limitations of vision-based technologies, namely their 
dependence on good lighting conditions, such as daytime and good weather. Image-based acquisition 
cannot robustly provide precise object geometry information under poor conditions. Recent advances in 
laser scanning technology have led to the integration of laser scanners on mobile mapping platforms. 
Mobile laser scanning can efficiently acquire very dense point clouds along road corridors. When 
integrated with a mobile mapping system, the data can be used to robustly capture the geometry of the 
road environment and for purposes of road surface inspection (Pu et al., 2012). Laurent et al. (2012) tested 
the use of car-mounted 3D laser scanners in automated road surface inspection. 

The ground-penetrating radar (GPR) is a geophysical method that uses radar pulses to provide an image 
of the subsurface. It enables surveying the sub-surface to investigate underground utilities such as 
concrete and asphalt. GPR has proved its potential for road inspections, having several advantages, such 
as quasi-continuous measurements and the ability to map the sub-layers (Mahmoudzadeh et al., 2013). 
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The dual-light inspection method, which uses multiple sources of light to retrieve images, enables 
engineers to retrieve depth information from images, see distance and inspect the distress of pavement 
automatically (Box 2). Su et al. (2012) describes the four steps of a dual-light inspection (DLI) method:  

1. Two artificial lights capture two images by turning on alternative lights as a pair from an identical 
position and orientation.  

2. The two images are combined to generate one subtracted image that presents the different pixels 
between the paired images.  

3. An image-processing algorithm, such as one using edge-detecting and corner-detecting methods, 
enhances the distress features.  

4. A classification algorithm categorises the images into groups with and without distress features. 

Most of the technologies described above have their limitations. Despite their accuracy and effectiveness, 
they are usually costly. As such, the coverage and collection frequency can remain insufficient for detecting 
dynamically changing road conditions.  

 

Box 2. The “Road eye” system for monitoring road surfaces  

The grip of tires and the ease with which a vehicle navigates a road is greatly influenced by the road surface 
condition: if the road is dry or covered with water, ice, snow or slush. Certain weather conditions may 
create driving hazards and influence the maximum speed at which the vehicle can travel safely. 

The “Road eye” system assesses the state of roads subjected to climate factors. It uses a vehicle equipped 
with an optical sensor to collect data. The sensor uses light sources of different wavelengths to illuminate 
the road surface and a detector to measure the reflected light from the road surface. The differences in 
absorption, scattering and polarisation help identify the state of the road: dry, wet, icy, snowy or slushy. 
The vehicle communicates the data and its position on the road in real-time to a special software. This 
data is used to divide the road into segments based on the state of the road. It is combined with Google 
Maps (using different colours for different conditions) and the information is available to the public.  

The data is used by road maintenance departments to trigger various kinds of actions, such as changing 
the speed limits on different segments of roads and planning and initiating maintenance actions like snow 
ploughing or spreading sand on icy roads to improve driving conditions. The same technology can be used 
for data collection on dry roads to assess a road’s degradation over time due to age and usage. This 
identifies the location and size of cracks and potholes, curb condition, etc.  

Source: Casselgren, Rosendahl and Eliasson (2012). 

 

To reduce deployment costs, various pilot studies have been developed to use regular smartphones to 
collect data on road conditions. Using regular phones makes data collection much easier than applying 
special equipment, but that ease comes at a cost: that of low-quality data. Many projects have focused on 
dealing with this challenge. 

The demonstrated potential of the smartphone to monitor road surfaces can be used to develop a 
community sensor network by involving volunteers who can share information about road conditions while 
travelling (Alessandroni et al., 2014). In another project, smartphones were used for sensing the road 
surface condition from a moving vehicle via a smartphone application that collects acceleration data, 
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processes the information, communicates it to a central server and visualises the road condition on Google 
maps (Kumar, Mukherjee and Singh, 2017). Smartphones can also be used to detect bumps and potholes 
by calculating the similarity of two signals based on template references (Singh et al., 2017). In another 
project, a smartphone sensor was used to detect braking events and bumps on the roads to characterise 
the type of road (Bhoraskar et al., 2012).  

Another project adopts a machine learning approach to predict road conditions based on running vehicles’ 
vibration data via sensors built into most smartphones. In addition, it analyses the data using deep learning 
technologies in order to weed out the noise contained in the data, such as the differences in vibrations 
related to different brands and conditions of vehicles, different weather conditions, different traffic 
conditions, and varying driving behaviours that can affect the quality and consistency of the collected data 
(Ahn, Wang and Du, 2019). Cabral et al. (2018) show that data collected via smartphones can also monitor 
damage on unpaved roads. 

Bridges 

Bridges are often classified as critical transport infrastructure. As such, it is essential they remain in good 
condition. Infrastructure managers often use condition monitoring tools and technology for planning 
maintenance actions and the life-cycle management of bridges. They also collect data from inspection and 
condition monitoring devices for managing maintenance and planning repair and replacement activities.  

 

Box 3. The Argo platform for infrastructure monitoring 

The Argo platform is a modular platform for infrastructure monitoring set up by three companies: 
Autostrade Tech, IBM and Fincantieri NexTech. Autostrade Tech is the system integrator and Centre of 
Excellence for Innovation of the Italian highway operator Autostrade per l’Italia (ASPI). IBM is a global 
information technology company. Fincantieri NexTech is part of the Fincantieri construction group that 
focuses particularly on shipbuilding. Fincantieri NexTech created the technological monitoring system of 
the new bridge in Genoa.  

The Argo platform manages the data and processes related to the inspection and maintenance of Argo’s 
infrastructure assets. Monitoring of the assets is based on distributed industrial IoT technology. Drones 
inspect the infrastructure assets, photographing defects and creating a digital model (a “digital twin”) of 
the asset. The digital twin is created through light detection and ranging technology. Together, these two 
technologies generate a highly precise “point cloud” (a set of data points in space). Artificial intelligence 
identifies and ranks anomalies in the assets, which are then communicated to the inspector. In this way, 
ASPI’s infrastructure assets are digitalised and their inspection reports catalogued. Today, the platform – 
supported by a mobile app – contains around 650 000 elements of information, an average of 
170 elements per asset.  

Source: IBM (n.d.). 

 

In most countries, the infrastructure manager follows national rules for bridge life-cycle management that 
invariably include service and maintenance, repair, and replacement planning for entire bridges or their 
components. As the operation and maintenance of bridges become more complex, infrastructure 
managers are adopting data-driven approaches to aid with decision making (Wu et al., 2020). An example 
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of such an approach is the Argo platform, used by the Italian highway operator Autostrada per l’Italia 
(Box 3). 

Maintenance data for bridges are qualitative or quantitative descriptions of a bridge, its components and 
the surrounding environment. Bridge profile data, traffic data and the surrounding environment, especially 
the transition zone connecting railway track or road infrastructure to the bridge, will influence the lifespan 
modelling of the bridges. Data describing the types of force the bridge endures and the bridge’s 
corresponding structural response are critical for the lifespan model of bridge infrastructure and for 
maintenance planning (Wu et al., 2020). 

Currently, most of the bridge maintenance data needs are defined by bridge inspection and maintenance 
manuals that usually require physical contact with the bridge structure. Bridge inspections often consist 
of visual observations, but these inspections are time-consuming and subjective. Developing inexpensive, 
easily deployable, non-contact sensing solutions suitable for field application could improve the inspection, 
monitoring and assessment of existing infrastructure. Developments in sensor technology, such as strain 
gauges, accelerometers, deflection gauges, etc., could boost the structural health monitoring (SHM) 
of bridges. 

Tunnels 

Tunnels are an important part of transport infrastructure. Their functionality at the design service level is 
critical for smoothly flowing traffic. Road or rail tunnel maintenance must be considered from the life cycle 
cost perspective. In underground rail systems, most of the operations depend on the serviceability of the 
tunnel networks. Tunnel networks of underground rail systems include the station structures, the traffic 
infrastructure, the ventilation networks, electrical wiring networks, etc. All these components must be in 
a functional state to achieve an acceptable service level of the tunnel. With the advent of new 
technologies, it is now possible to monitor and track the condition and functionality of these items. Long-
term serviceability and behaviour can be evaluated by taking into consideration all tunnel features, such 
as geometry, geological and hydrogeological conditions, age, construction techniques, operation 
conditions and material quality.  

Airports 

Preventive maintenance is common practice in aviation. The industry has stringent requirements to repair 
or replace parts and systems before they fail. These requirements are based on engineering data but do 
not take into account the everyday operating conditions. Due to the variability of the actual experience, 
some good parts are replaced too soon, whereas others may fail before the prescribed replacement 
schedule. For this reason, airlines are increasingly turning towards predictive maintenance that takes into 
account the actual operating conditions of assets, which allows for maintenance planning before failure 
occurs. Many aircraft are equipped with sensors that generate information on vibrations and heat and fuel 
consumption that can be fed into analytics platforms and help identify patterns and trends that can direct 
maintenance strategies (Daily and Peterson, 2017). Airport infrastructure managers could leverage these 
data for analysis on the state of airport runways. 

Efficient maintenance strategies at airports need a large amount of data about the state of airport facilities, 
the activities at the airport and its surroundings. The data must be accurate and readily available to the 
ground staff at any time. Although the ground staff can obtain data manually according to prescribed 



APPLICATIONS OF DATA-DRIVEN MAINTENANCE IN TRANSPORT SECTORS 

20 DATA-DRIVEN TRANSPORT INFRASTRUCTURE MAINTENANCE © OECD/ITF 2021 

protocols, this activity is time-consuming and subject to human error. The data can be obtained and 
processed with automated procedures that are part of existing or developing geographic information 
systems. The demand for prompt, accurate data available in real-time has encouraged the development 
of systems that enable the automated acquisition and processing of data. 

Traditionally, most airport authorities make maintenance decisions for airport pavements based on 
experience and appropriate established engineering practices. Since the mid-1980s, many airport agencies 
use the Airport Pavement Management System (APMS), a support system to develop cost-effective airport 
maintenance strategies. APMS follows a systematic procedure for determining needs and priorities, 
planning and scheduling maintenance, and required resource allocation. It delivers specific pavement 
network maintenance recommendations at an acceptable level of service after analysing the collected 
information and optimising the expenditures (Di Mascio and Moretti, 2019). APMS has significantly 
improved the pavement conditions in the United States (Moretti et al., 2017). The APMS also guides 
schedules for controls. In many US states, airport authorities should investigate an airport's functional 
conditions at 36-48 months and evaluate structural conditions through inspection of bearing capacity at a 
60-month frequency. 

Currently, a variety of indicators exist to measure the state of airport pavement, originally developed for 
measuring the performance of roads:  

• The pavement condition index (PCI): Many aviation agencies apply this methodology, which was 
developed by the US Army Corps of Engineers. The PCI values are determined on the basis of 
visual inspection and identify the types of distress, the magnitude, and the quantities prevalent 
on the pavement surface. PCI indicates the rating of the pavement's condition. The scores range 
from 0 (failed) to 100 (excellent).  

• Present serviceability index (PSI): This index was developed in the early 1960s and relates to the 
values of rutting, cracking, patching and pavement smoothness. Ratings are provided on a five-
point distinct scale (0 for poor and 5 for excellent). 

• International roughness index (IRI): The IRI is calculated from the road surface profile and 
computed using the surface elevation. The IRI has been applied broadly and adopted as a 
standard by the Federal Highway Performance Monitoring System. 

While accurate measurements of the surface of the runway are very important, it is also necessary to find 
the cause of the emergence of deformities. Deformities occur on runways mostly due to the large forces 
at airplane landing, tectonic and meteorological changes, underground streams, or other causes. Two main 
types of deformations include surface deformations - such as cracks, humps and holes - and underground 
deformations, among which voids and underground cracks are the most frequent.  

Advanced technologies now assess the emergence of deformities of runways and accurately measure 
moisture levels, temperature, strain and other factors relevant to wear and degradation. Chicago O'Hare 
Airport used dynamic strain gauges to examine the relative effectiveness of various isolation joint 
arrangements in the airport concrete pavements. Various airports – Shanghai, Hawaii, Newark – have built 
or plan to build concrete pavements with embedded strain gauges and other sensors in runway pavements 
or asphalt overlays to calculate the stresses induced by aircraft and supervise the propagation of horizontal 
shear deformation surface (Tofail et al., 2020). The use of 3D laser scanning with high resolution can help 
detect surface deformities on runways. Radar measurements can detect distortions of the surface, 
discovering the underground infrastructure, and finding cracks and voids and other anomalies in the lower 
structure of runways. This reduces the costs of restoration and runway maintenance.
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Merits of data-driven approaches  

Data-driven approaches have evolved significantly over the last decades. With the re-emergence of AI 
technologies and digitalisation, the data-driven approach has become a tool for industry in general and 
the transport industry in particular. The data-driven approach promises to enhance fact-based decision 
making and capabilities to predict the remaining useful life of assets and improve cost efficiency and 
environmental sustainability. 

Arguably, data-driven approaches increase objectivity, equity, and fairness. Artificial intelligence could 
positively influence the effectiveness of transport infrastructure maintenance. Machine learning can 
quickly compile historical data and create a risk map to assist with decisions. In addition, using a predictive 
model that has a learning component can account for variations in different subpopulations and potentially 
capture changes in risk over time. Data-driven approaches could result in the following advantages: 

• Fact-based decision making: The increased computing capacity that enables the implementation 
of advanced AI algorithms empowers industry to process the ever-increasing data sets and to 
understand the correlations in the data. This, in turn, increases industry’s insight to recognise and 
predict visible and hidden real-world phenomena. Embracing the data-driven approach could 
change the decision-making processes in the transport industry. 

• Transparency via data-democratisation: A data-driven approach aides industries, like those in the 
transport sector, to share data and models. Increased availability and accessibility of data and 
models in a unified manner promotes transparency in decision making for organisations and 
individuals.  

• Enhanced collaboration: A data-driven approach promotes a culture of communication and 
collaboration in industry through fact-based decision making in operation and maintenance. 
Enhanced collaboration increases the effectiveness and efficiency between organisations as well 
as that of their staff. 

• Bias reduction: Intuition-based decision making in industry might lead to errors and disruptions 
in operation and maintenance. Data-driven approaches use a generic tool for analytics that 
reduces bias in decision making and inconsistency in the decisions made.  

Despite the many advantages of data-driven approaches, they present new challenges that need to be 
addressed. When used inappropriately, artificial intelligence technology risks producing misleading results. 
As it uses past information to make predictions of future behaviour, artificial intelligence cannot account 
for unknown factors that could influence outcomes. As with all models, when future events do not follow 
historical trends, models can be rendered invalid. With the deployment of artificial intelligence this pitfall 
can become less obvious and needs explicit treatment. 

AI algorithms are not generally biased, but the deterministic functionality of the AI model is subject to the 
tendencies of the data; therefore, the corresponding algorithm may unintentionally perpetuate biases if 
the data are biased. Biases in AI can surface in various ways. For example, the data may be insufficiently 
diverse, prompting the software to guess based on what it “knows.” This suggests that the main objective 
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of implementing a data-driven approach in transport should be to augment human intelligence. However, 
augmenting human intelligence is not just a matter of data provisioning, but this augmentation needs 
intelligence techniques – such as Deep Learning – to perceive and cognise data, and also to adapt to 
situations and act accordingly. Possible setbacks to data-driven approaches could be: 

• Low-quality data: A data-driven approach consumes and analyses a massive amount of data that 
are collected from a number of data sources to bring insight to decision making. Poor data quality 
will lead to less accuracy and reliability. 

• Blind trust: Data-driven approaches for analytics, as any approach, are built on assumptions, 
simplifications and descriptions of usage contexts. These assumptions and simplifications need 
to be measured, quantified and explained for decision makers. If decision makers do not fully 
understand the assumptions and the context, they may make poorly informed and inaccurate 
decisions. 

• Knowledge transformation: Artificial intelligence is the means to transform know-how and 
experience into a set of algorithms. One of the main challenges for industry, then, when 
implementing data-driven approaches, is to maintain a high level of human knowledge resources 
as the organisation leans more and more on AI.  

Data-driven approaches to transport maintenance are confronted with various challenges. One of those is 
data acquisition. In a data-driven approach, data is necessary to solve a problem. But how can one know 
which data sets can be used to describe a real-world phenomenon? How does one select the data that are 
significant for cognition?  

Another challenge is related to the algorithms that process the data. Selecting the appropriate algorithm 
is a major optimisation challenge. Measuring the precision of the algorithm can be an indicator of its 
accuracy, but measuring model precision requires known knowledge for validation. So, what if the 
knowledge that describes a real-world phenomenon is not yet known? Can one enable explainability in 
algorithms to improve their trustworthiness? 

Data-driven approaches are highly dependent on what is called domain knowledge. Domain knowledge 
refers to the understanding of particularities in an industrial sector, such as transport. Domain knowledge 
can be used, for instance, to describe the physics of failure, which is the understanding of the relationship 
between e.g. physical, thermal, chemical, electrical mechanisms over time within a given context. 
Understanding the physics of failure helps to select the relevant data sets and the most appropriate 
algorithms. 

Furthermore, the strength of data-driven approaches is their ability to: transform high-dimensional, noisy 
data into lower-dimensional information for diagnostic or prognostic decisions; identify remaining useful 
life; and facilitate decision making in infrastructure maintenance (Dragomir et al., 2009). Data-driven 
techniques and machine learning have been increasingly applied in industry to estimate the remaining 
useful life of infrastructure and have shown improved performances over conventional approaches. In 
practice, however, it is not easy to apply data-driven approaches due to the lack of efficient procedures to 
obtain training data and specific domain knowledge.
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Policy implications 

Governments are involved in transport infrastructure maintenance in various ways. Government agencies 
in many transport sectors act as infrastructure managers and are, as such, responsible for strategic 
maintenance of the infrastructure. They also provide maintenance budgets. In other transport sectors, 
governments have privatised infrastructure investment – and the connected decisions on maintenance – 
and keep influence over maintenance strategies via concessions, licenses and contracts. At the same time, 
the government is also a regulator charged with regulating transport sectors and the way in which data 
can be shared. As such, governments try to guarantee safe, secure and effective transport and data 
governance systems. There can be trade-offs between the different roles – and interests – of governments. 
The role of policy makers is to find an appropriate balance in the context of these trade-offs.  

Data-driven approaches to transport infrastructure maintenance have considerable potential advantages. 
They could provide more accurate insights into the actual state of the infrastructure asset than more 
traditional maintenance methods like regular physical inspections. The extent to which data-driven 
approaches are implemented and the timeline for each might differ according to the sector, place and 
specific context. For example, in the case of proven technology, policy makers might want to focus on the 
roll-out of good practices, whereas experimentation might be more suitable where it is unclear how new 
data technologies could be leveraged for more effective maintenance. Governments could also broker 
new data partnerships that could facilitate data-driven approaches. It may be wise to limit partnerships to 
data of public interest and to apply principles of purpose specificity (only providing data for a specific 
purpose) and data minimisation (limit the exchange to the minimal). 

Policy makers should take into account good practices related to data governance when introducing 
initiatives for data-driven approaches. They should make sure that data-driven approaches comply with 
privacy protection regulations. This means that data should be anonymised and encrypted. Location and 
trajectory data are the most vulnerable, so they should be covered by the most robust protection methods. 
Policy makers should develop and endorse non-disclosure agreements, involve only trusted third parties 
and develop “safe answers” approaches, in which only query results are exchanged instead of raw data. 

Data-driven approaches to transport infrastructure maintenance may necessitate more flexible 
regulations and guidelines. Current regulations and guidelines that apply to condition-based maintenance 
strategies may have requirements that are ill-adapted to the new approaches. Policy makers will need to 
ensure that the policies applied to data-driven approaches do not stifle their potential benefits. This 
implies updating transport infrastructure maintenance regulations and guidelines. 
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Notes

1 Failure mechanisms can be grouped into overstress and wear-out mechanisms. In the case of overstress, an item fails only if the stress to which 
the item is subjected exceeds the strength of the item. If the stress is below the strength, the stress has no permanent effect on the item. In the 
case of wear-out, the stress causes damage that usually accumulates irreversibly. The accumulated damage does not disappear when the stress 
is removed, although sometimes annealing is possible. The cumulative damage does not cause any performance degradation as long as is it below 
the endurance limit. Once this limit is reached, the item fails. The effects of stresses are influenced by several factors -- geometry of the part, 
constitutive and damage properties of the materials, manufacturing and operational environment as discussed earlier. 
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