Integrated LCA Toolkits for Sustainable Transportation Infrastructure

Krishna Prapoorna

Associate Professor, Department of Civil & Environmental Engineering Indian Institute of Technology Tirupati

Session IV: LCA focusing on transport infrastructure in India Workshop under the DTEE and NDC-TIA projects Life cycle assessment methods to support India's efforts to decarbonise transport International Transport Forum & NITI Aayog

Strategic Visions: India & Global

Smart Solutions: Climatic Impact & Decisions

PERVIOUS CONCRETE

Special type of concrete having characteristic interconnected pore structure

- *Interconnected pores*
- *Coarse*
	- *aggregates*
	- *No / limited fines*
- *Reduces runoff*
	- *quantity*
- *High latent heat capacity*

Pervious Concrete: Field Demonstration

Pervious Concrete: New Generation Designs

IIT Tirupati, India, March 2019

Pervious Concrete: New Generation Designs

- *IIT Kharagpur, 2017: Chandrappa, A.K., Maurya, R., Biligiri, K.P., Rao, J.S., and Nath, S., 2018. Laboratory investigations and field implementation of pervious concrete paving mixtures. ASTM Int'l Advances in Civil Engineering Materials, 7: 447-462*
- *Tirupati Smart City, 2018: Singh, A., Jagadeesh, S.G., Sampath, P.V., and Biligiri, K.P., 2019. Rational approach for characterizing in-situ infiltration parameter in two-layered pervious concrete pavement systems. Journal of Materials in Civil Engineering, American Society of Civil Engineers, 31 (11): 04019258*
- *IIT Tirupati, 2019: Vaddy, P., Singh, A., Sampath, P.V., and Biligiri, K.P., 2020. Multi-scale in-situ investigation of infiltration parameter in pervious concrete pavements, ASTM International Journal of Testing and Evaluation (DOI: 10.1520/JTE20200052)*

Lifecycle Assessment Toolkit Framework for *Energy Consumption* **&** *Carbon Footprint* **of** *Building Materials* **and** *Infrastructure*

Background to Lifecycle Assessment (LCA)

- *Structured framework to quantify environmental impacts of a product or system*
- *Identifies most critical environmental inputs and outputs: material acquisition to its end-of-life (EOL)*

Generic lifecycle stages of a product/system/process

Lifecycle Phases

LCA: Indicator / Metric

- *Standards for LCA:* ISO:14040-2006; ISO:14044-2006
- *Types of LCA:* cradle-to-gate; cradle-to-grave; gate-to-gate; gate-tograve; cradle-to-cradle
- *Commercial LCA software:* openLCA (freeware); SimaProTM; Ecochain; Mobius; Gabi; OneClickLCA, etc.
- *Standard LCA databases:* Ecoinvent® 3.7; UVEK® LCI; Environmental footprints®, etc.
- *LCA modeling approaches:* attributional versus consequential
- *Lifecycle impact assessment methods:* ReCiPe, Impact 2002+, Ecoindicator, CML, TRACI, IPCC, USEtox, etc.

LCA of Pervious Concrete Pavements – *Goal & Scope*

Research Goal: Development of a systematic and user-friendly toolkit for rational assessment of environmental credibility of pavement systems

- *Comparative LCA study: pervious concrete pavement (PCP) versus Portland cement concrete pavement (PCCP)*
- *Study parameters: embodied energy, kg CO² equivalent, and capital cost*
- *Cradle-to-gate LCA approach*
- *Other potential areas for application of proposed framework: building materials and infrastructure*

Singh, A., Vaddy, P., and Biligiri, K. P., "Quantification of embodied energy and carbon footprint of pervious concrete pavements through a methodical lifecycle assessment framework", Resources, Conservation and Recycling, Elsevier, 161 (2020) 104953

Environmental Impacts due to PC Technology

PC – Pervious concrete; PCC – Portland cement concrete; RMC – Ready mixed concrete

LCA of Pervious Concrete Pavements – *Inventory Analysis*

- *Data collection:*
	- *Primary – Construction Agency*
	- *Secondary – Literature; India construction materials database of embodied energy and global warming potential, 2017; CPCB*
- *Materials and pavement systems:*
	- *Ordinary Portland cement - 53 grade conforming to IS:12269*
	- *Crushed aggregates - 12.5 mm and finer size; M-sand*
	- *Target compressive strength - 25 MPa*

Configurations of different pavement systems with base layers and equal service life

LCA of Pervious Concrete Pavements – *Inventory Analysis*

Functional unit – 1 km long single lane road, 3.5 m wide, and 0.35 m thick designed to handle low-volume traffic

Lifecycle phase and components within system boundary for different pavement systems

LCA of Pervious Concrete Pavements – *Impact Assessment*

LCA model: *Development of an MS Excel® toolkit*

- \bullet *Total embodied energy (MJ/km) = ∑(1000 x W x (T x D_n x (P_e + M_e + (T_e x D_i)) + C_e))*
- *Total kg CO*₂ *eq./km* = ∑(1000 *x W x (T x D_n x (P_g + M_g + (T_g x D_i)) + C_g))*
	- *W = Width of the road in m; T = Thickness of layer in m*
- *Dⁿ = Density of pavement material in kg/m³*
- *P^e = Material production value in MJ/kg*
- P_g **= Material production value in kg CO₂ eq./kg**
- *M^e = Material mixing value in MJ/kg*
- M_o = Material mixing value in kg CO₂ eq./kg
- *T^e = Transport from production site to application site in MJ/kg-km*
- *T^g = Transport from production site to application site, kg CO² eq./kg-km*
- *Dⁱ = Distance from material production site to application site in km*
	- *C^e = Material compaction value in MJ/m²*
- C_g = Material compaction value in kg CO_2 *eq./m²*

LCA of Pervious Concrete Pavements – *Impact Assessment*

- *Material production values:* total energy consumed or emissions produced during production of a unit quantity of material
- Material mixing value: energy consumed (M_e) or quantity of emissions produced (M_g) due to mixing of a unit quantity of material

$$
M_e (MJ/kg) = \frac{3.6 \times Engine power (kW)}{Mixing frequency (k g/hr)}
$$

$$
M_e (MJ/kg) = \frac{Field\ consumption (l/hr) x \ Thermal\ energy\ of\ fuel (MJ/l)}{Mixing\ frequency (k\ g/hr)}
$$

 M_g (kg CO₂eq./kg) = Fuel consumption $(l/h r) x$ Emissions from fuel (kg CO $_2$ eq ./l) Mixing frequency (kg/hr)

 M_a (kg CO₂ eq./kg) = E x Energy consumed in mixing (M J/k g)

 $Electric$ $Energy - GHG$ $Emission$ $Factor$ = % of Thermal Energy x $((1.90 \times CO (kg/M))) + (265 \times NO_x (kg/M)))$

LCA of Pervious Concrete Pavements – *Impact Assessment*

• Energy consumption and emissions generated during transportation:

3.6 x Engine Power (kW

 T_e (MJ/kg – km) = Speed of vehicle $(kmph)$ x Quantity of material transported (kg

 T_g (kg CO₂ eq./kg – km) = Vehicular emissions ($kg\ CO_2$ eq./k m – hr) x Travel time (hr) Quantity of material transported (kg)

• Material compaction value: energy consumed (C_e) or emissions generated (C_g) during compaction of unit surface area of a pavement layer

> C_e $\left(MJ/m^2\right)$ = 0.0036 x Number of passages x Engine power (kW Speed of vehicle (kmph) x Width of roller (m

> > $Ce(M/M^2) =$ Engine power (kW Compaction rate (m^2/s) x 1000

 ${\cal C}_g\left(kg\ {\cal C}{\cal O}_2\ eq./m^2\right)=$ Number of passes x Emissions from fuel (kg CO $_{2}$ eq ./l) Width of compactor (m) x Mileage of vehicle (m/l)

 C_g $(kg$ CO_2 eq./m² $) = E x$ Compaction energy (M/m^2)

LCA of Pervious Concrete Pavements – *Interpretation*

RMC mixing: *Embodied energy* and *kg CO² equivalent* - PCP < PCCP by *2.97%* and *2.84%*, respectively

In-situ mixing: *Embodied energy* and *kg CO² equivalent* - PCP < PCCP by

3.16% and *2.94%*, respectively

Environmental impacts of pavement systems

LCA of Pervious Concrete Pavements – *Interpretation*

Sensitivity analysis

• **Model inputs parameters tested for sensitivity variations (±20%):** *transportation distance, material production, material mixing, material compaction, and density of materials*

Sensitivity of density, production, mixing, compaction, and transportation distance for: (a) Embodied energy; (b) GHG emissions

Capital Cost Analysis

- Cradle-to-gate study: cost analysis restricted to expenditure incurred up to pavement construction stage alone
- Locally available materials and labor costs
- Excel program: *set of computational tools and models*

$$
Total cost (Rs./km) = \sum (T x W x (M_c + T_c + C_c))
$$

where,

- *T = Thickness of layer in m*
- *W = Width of the road in m*
- M_c *= Material cost in Indian Rs./km/m²*
- T_c *= Material transportation cost in Indian Rs./km/m²*
- \mathcal{C}_c $=$ *Construction cost in Indian Rs./km/m² =* \sum *[mixing cost, equipment (concrete mixer and vibrator), rental charges, and labor cost]*

Capital Cost Analysis

Total and layer-wise cost of pavement systems

LCA of Pervious Concrete Pavements – *Futuristic Scope*

- *Embodied energy* **and** *kg CO² eq.* **of PCP lower than PCCP by about** *3%*
- **RMC mixing** *slightly expensive (capital cost)* **than in-situ mixing**
- **Proposed LCA methodology:**
	- *practical and convenient toolkit* **with** *well-defined system boundaries* **and** *elaborated calculation procedures* **that allows for** *easy adoption* **by researchers and agencies across the world**
	- *suitable* **for computation of** *energy consumed* **and** *emissions generated* **during various phases such as** *building material production, construction, maintenance and repair, and end-of-life*
- **Futuristic measures to** *reduce heterogeneity in functional units, processes, phases, and other LCA components*
- **LCA: essential to** *guide planning* **and** *decision-making*
- *Full lifecycle cost analysis***: economic perspectives; big-data**

Asphalt-Rubber Technology: LCA

White, P., Golden, J. S., Biligiri, K. P., and Kaloush, K. E. "Impacts of Alternative Pavement Designs on Climate Change", Journal of Resources, Conservation and Recycling, Volume 54, Issue 11, September 2010, pp. 776-782

Integrated Lifecycle: Mechanistic Roadway Designs

Distresses in pavement system

Integrated Lifecycle: Mechanistic Roadway Designs Cont'd…

FUTURE EXPECTATIONS

- *Performance monitoring of field pavement systems: Test sections: all road classes*
	- *Long-term pavement performance*
	- *Automation in estimation & prediction*
	- *Use of AI / ML / IP, etc.: advanced tools*
- *Establish laboratory & field correlations*
- *Develop field design specifications for construction Sustainable roadway infrastructure: LID*
- *Financial implications: LCA; LCCA; B/C ratio*
- *Pavement Assets: Retrofitting & Econometrics Foster collaboration(s) between academia & industry to create SUSTAINABLE roads*

IITT ADVANCED PAVEMENT SYSTEMS (APS) RESEARCH CLUSTER

https://iitt-apsrc.weebly.com

THANK YOU Questions & Comments **Email: bkp@iittp.ac.in**

ACKNOWLEDGMENTS:

GoI ME; IIT Kharagpur & IIT Tirupati Personnel; Andhra Pradesh Road Development Corporation; Avishreshth (IITT); Poornachandra (IITT); Dr. Anush (IITBBS); Dr. Prasanna (IITT); Harini Constructions, Tirupati; & Several others