Integrated LCA Toolkits for Sustainable Transportation Infrastructure

Krishna Prapoorna

Associate Professor, Department of Civil & Environmental Engineering Indian Institute of Technology Tirupati

Session IV: LCA focusing on transport infrastructure in India Workshop under the DTEE and NDC-TIA projects Life cycle assessment methods to support India's efforts to decarbonise transport International Transport Forum & NITI Aayog

Strategic Visions: India & Global

Global Sustainable Innovation &	Materials: Advanced Testing &	Sustain- ability	Energy & Environment: Global	Holistic Approach: Constitutive	National / International Collaboration
 Programs Academia Research Centers Industry Education Training 	 Characterization Development of IRC / ASTM / CEN standards Laboratory Testing Roundrobin 	 Novel materials Recyclable products Rubber Plastic Waste resource Textile Etc. 	Impact / Climate Change • <u>LCCA</u> • LCCA • Porous • UHI	Modeling / Fundamental Science • Mechanistic • Lab-Field Correlations • Numerical • Analytical	 Centers of Excellence Research Institutes Ministry NHAI EU IUSSTF Virtual Centers
					• ITF

Smart Solutions: Climatic Impact & Decisions

PERVIOUS CONCRETE

Special type of concrete having characteristic interconnected pore structure

- Interconnected pores
- Coarse
 - aggregates
 - No / limited fines
- Reduces runoff quantity
- High latent heat capacity

Pervious Concrete: Field Demonstration

July 2017

Pervious Concrete: New Generation Designs

IIT Tirupati, India, March 2019

Pervious Concrete: New Generation Designs

- IIT Kharagpur, 2017: Chandrappa, A.K., Maurya, R., Biligiri, K.P., Rao, J.S., and Nath, S., 2018. Laboratory investigations and field implementation of pervious concrete paving mixtures. ASTM Int'l Advances in Civil Engineering Materials, 7: 447-462
- Tirupati Smart City, 2018: Singh, A., Jagadeesh, S.G., Sampath, P.V., and Biligiri, K.P., 2019. Rational approach for characterizing in-situ infiltration parameter in two-layered pervious concrete pavement systems. Journal of Materials in Civil Engineering, American Society of Civil Engineers, 31 (11): 04019258
- IIT Tirupati, 2019: Vaddy, P., Singh, A., Sampath, P.V., and Biligiri, K.P., 2020. Multi-scale in-situ investigation of infiltration parameter in pervious concrete pavements, ASTM International Journal of Testing and Evaluation (DOI: 10.1520/JTE20200052)

Lifecycle Assessment Toolkit Framework for *Energy Consumption* & Carbon Footprint of Building Materials and Infrastructure

Background to Lifecycle Assessment (LCA)

- Structured framework to quantify environmental impacts of a product or system
- Identifies most critical environmental inputs and outputs: material acquisition to its end-of-life (EOL)

Generic lifecycle stages of a product/system/process

Lifecycle Phases

LCA: Indicator / Metric

- Standards for LCA: ISO:14040-2006; ISO:14044-2006
- *Types of LCA:* cradle-to-gate; cradle-to-grave; gate-to-gate; gate-to-grave; cradle-to-cradle
- Commercial LCA software: openLCA (freeware); SimaPro[™]; Ecochain; Mobius; Gabi; OneClickLCA, etc.
- Standard LCA databases: Ecoinvent® 3.7; UVEK® LCI; Environmental footprints®, etc.
- LCA modeling approaches: attributional versus consequential
- Lifecycle impact assessment methods: ReCiPe, Impact 2002+, Ecoindicator, CML, TRACI, IPCC, USEtox, etc.

LCA of Pervious Concrete Pavements – Goal & Scope

Research Goal: Development of a systematic and user-friendly toolkit for rational assessment of environmental credibility of pavement systems

- Comparative LCA study: pervious concrete pavement (PCP) versus Portland cement concrete pavement (PCCP)
- Study parameters: <u>embodied energy</u>, <u>kg CO₂ equivalent</u>, and <u>capital cost</u>
- <u>Cradle-to-gate</u> LCA approach
- Other potential areas for application of proposed framework: <u>building materials</u> and <u>infrastructure</u>

Singh, A., Vaddy, P., and Biligiri, K. P., "Quantification of embodied energy and carbon footprint of pervious concrete pavements through a methodical lifecycle assessment framework", Resources, Conservation and Recycling, Elsevier, 161 (2020) 104953

Environmental Impacts due to PC Technology

PC - Pervious concrete; PCC - Portland cement concrete; RMC - Ready mixed concrete

LCA of Pervious Concrete Pavements – Inventory Analysis

- Data collection:
 - Primary Construction Agency
 - Secondary Literature; India construction materials database of embodied energy and global warming potential, 2017; CPCB
- Materials and pavement systems:
 - Ordinary Portland cement 53 grade conforming to IS:12269
 - Crushed aggregates 12.5 mm and finer size; M-sand
 - Target compressive strength 25 MPa

Configurations of different pavement systems with base layers and equal service life

Scenario	Surface course	Base layer	Mixing method
А	Pervious concrete	Granular	RMC
В	Portland cement concrete	Granular	RMC
С	Pervious concrete	Granular	ln-situ
D	Portland cement concrete	Granular	In-situ

LCA of Pervious Concrete Pavements – Inventory Analysis

Functional unit - 1 km long single lane road, 3.5 m wide, and 0.35 m thick designed to handle low-volume traffic

Lifecycle phase and components within system boundary for different pavement systems

LCA of Pervious Concrete Pavements – Impact Assessment

LCA model: Development of an MS Excel® toolkit

- Total embodied energy $(MJ/km) = \Sigma(1000 \times W \times (T \times D_n \times (P_e + M_e + (T_e \times D_i)) + C_e))$
- Total kg $CO_2 eq. / km = \Sigma(1000 \times W \times (T \times D_n \times (P_g + M_g + (T_g \times D_i)) + C_g))$
 - W = Width of the road in m; T = Thickness of layer in m
 - = Density of pavement material in kg/m³
 - = Material production value in MJ/kg
 - = Material production value in kg CO₂ eq./kg
 - = Material mixing value in MJ/kg

 D_n

P

 P_q

M

Mo

T_o

 T_{q}

 D_i

 C_{q}

- = Material mixing value in kg CO₂ eq./kg
- = Transport from production site to application site in MJ/kg-km
- = Transport from production site to application site, kg CO₂ eq./kg-km
- = Distance from material production site to application site in km
- = Material compaction value in MJ/m²
- = Material compaction value in kg CO_2 eq./m²

LCA of Pervious Concrete Pavements – Impact Assessment

- Material production values: total energy consumed or emissions produced during production of a unit quantity of material
- Material mixing value: energy consumed (M_e) or quantity of emissions produced (M_g) due to mixing of a unit quantity of material

$$M_{e}(MJ/kg) = \frac{3.6 \, x \, Engine \, power(kW)}{Mixing \, frequency(kg/hr)}$$

$$M_{e}(MJ/kg) = \frac{Fuel \ consumption\ (l/h\ r)\ x\ Thermal\ energy\ of\ fuel\ (MJ/l)}{Mixing\ frequency\ (k\ g/h\ r)}$$

 $M_{g}(kg \ CO_{2}eq./kg) = \frac{Fuel \ consumption \ (l/hr) \ x \ Emissions \ from \ fuel \ (kg \ CO_{2} \ eq \ ./l)}{Mixing \ frequency \ (kg/hr)}$

 M_g (kg CO₂ eq./kg) = E x Energy consumed in mixing (MJ/kg)

Electric Energy – GHG Emission Factor = % of Thermal Energy $x ((1.90 \times CO (kg/MJ)) + (265 \times NO_x (kg/MJ)))$

LCA of Pervious Concrete Pavements – Impact Assessment

Energy consumption and emissions generated during transportation:

 $T_{e}(MJ/kg - km) = \frac{3.6 \ x \ Engine \ Power(kW)}{Speed \ of \ vehicle(kmph) \ x \ Quantity \ of \ material \ transported(kg)}$

 $T_g (kg \ CO_2 \ eq./kg - km) =$ Vehicular emissions $(kg CO_2 eq ./km - hr) x$ Travel time (hr)*Quantity of material transported (kg)*

 Material compaction value: energy consumed (C_e) or emissions generated (C_g) during compaction of unit surface area of a pavement layer

 $C_{e}(MJ/m^{2}) = \frac{0.0036 \, x \, Number \, of \, passages \, x \, Engine \, power \, (kW)}{Speed \, of \, vehicle \, (kmph) \, x \, Width \, of \, roller \, (m)}$

$$Ce(MJ/m^2) = \frac{Engine \ power(kW)}{Compaction \ rate(m^2/s) \ x \ 1000}$$

 $C_g (kg CO_2 eq./m^2) = \frac{Number of passes x Emissions from fuel (kg CO_2 eq./l)}{Width of compactor (m) x Mileage of vehicle (m/l)}$

 $C_{q}(kg \ CO_{2} \ eq./m^{2}) = E \ x \ Compaction \ energy \ (M \ J/m^{2})$

LCA of Pervious Concrete Pavements – Interpretation

RMC mixing: <u>Embodied energy</u> and <u>kg CO₂ equivalent</u> - PCP < PCCP by <u>2.97%</u> and <u>2.84%</u>, respectively

In-situ mixing: *Embodied energy* and <u>kg CO₂ equivalent</u> - PCP < PCCP by

<u>3.16%</u> and <u>2.94%</u>, respectively

Environmental impacts of pavement systems

LCA of Pervious Concrete Pavements – *Interpretation*

Sensitivity analysis

 Model inputs parameters tested for sensitivity variations (±20%): transportation distance, material production, material mixing, material compaction, and density of materials

Sensitivity of density, production, mixing, compaction, and transportation distance for: (a) Embodied energy; (b) GHG emissions

Capital Cost Analysis

- Cradle-to-gate study: cost analysis restricted to expenditure incurred up to pavement construction stage alone
- Locally available materials and labor costs
- Excel program: set of computational tools and models

$$Total \ cost \ (Rs./km) = \sum (T \ x \ W \ x \ (M_c + T_c + C_c))$$

where,

- T = Thickness of layer in m
- W = Width of the road in m
- M_c = Material cost in Indian Rs./km/m²
- T_c = Material transportation cost in Indian Rs./km/m²
- C_c = Construction cost in Indian Rs./km/m² = Σ [mixing cost, equipment (concrete mixer and vibrator), rental charges, and labor cost]

Capital Cost Analysis

Total and layer-wise cost of pavement systems

LCA of Pervious Concrete Pavements – Futuristic Scope

- **Embodied energy** and <u>kg CO₂ eq.</u> of PCP lower than PCCP by about <u>3%</u>
- RMC mixing slightly expensive (capital cost) than in-situ mixing
- Proposed LCA methodology:
 - practical and convenient toolkit with well-defined system boundaries and elaborated calculation procedures that allows for <u>easy adoption</u> by researchers and agencies across the world
 - <u>suitable</u> for computation of <u>energy consumed</u> and <u>emissions</u> <u>generated</u> during various phases such as <u>building material</u> <u>production, construction, maintenance and repair, and end-of-life</u>
- Futuristic measures to <u>reduce heterogeneity</u> in <u>functional units</u>, <u>processes</u>, <u>phases</u>, and <u>other LCA components</u>
- LCA: essential to <u>guide planning</u> and <u>decision-making</u>
- *Full lifecycle cost analysis*: economic perspectives; big-data

Asphalt-Rubber Technology: LCA

White, P., Golden, J. S., Biligiri, K. P., and Kaloush, K. E. "Impacts of Alternative Pavement Designs on Climate Change", Journal of Resources, Conservation and Recycling, Volume 54, Issue 11, September 2010, pp. 776-782

Integrated Lifecycle: Mechanistic Roadway Designs

Distresses in pavement system

Integrated Lifecycle: Mechanistic Roadway Designs Cont'd...

FUTURE EXPECTATIONS

- Performance monitoring of field pavement systems:
 Test sections: all road classes
 - Long-term pavement performance
 - > Automation in estimation & prediction
 - Use of AI / ML / IP, etc.: advanced tools
- Establish laboratory & field correlations
- Develop field design specifications for construction
 Sustainable roadway infrastructure: LID
- Financial implications: LCA; LCCA; B/C ratio
- Pavement Assets: Retrofitting & Econometrics Foster collaboration(s) between academia & industry to create SUSTAINABLE roads

IITT ADVANCED PAVEMENT SYSTEMS (APS) RESEARCH CLUSTER

https://iitt-apsrc.weebly.com

THANK YOU Questions & Comments

Email: <u>bkp@iittp.ac.in</u>

ACKNOWLEDGMENTS:

GoI ME; IIT Kharagpur & IIT Tirupati Personnel; Andhra Pradesh Road Development Corporation; Avishreshth (IITT); Poornachandra (IITT); Dr. Anush (IITBBS); Dr. Prasanna (IITT); Harini Constructions, Tirupati; & Several others