

Eyes On the Road

Technology to detect distraction and fatigue

AUTOLIV April 15, 2014

Copyright Autoliv Inc., All Rights Reserved

Autoliv / ITF-OECD / 2014 / slide1

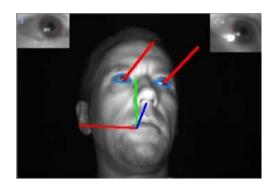
Agenda

- Distraction
- Drowsiness
- EyesOnRoad hardware
- Conclusions

Background

- Distraction is cited as the main cause in 78% of crashes and 65% of near-crashes in NHTSA 100-car study (2006)
- Distraction is a contributing factor in more than 20% of all accidents including fatalities and serious injuries
- Sleepiness as an accident factor has been reported at 1-3%.
 - In post crash interviews, drivers tend not to report "I fell asleep at the wheel"
- Sleepiness may be a contributing factor in 10-30% of light vehicle accidents (Anund & Patten, 2010)

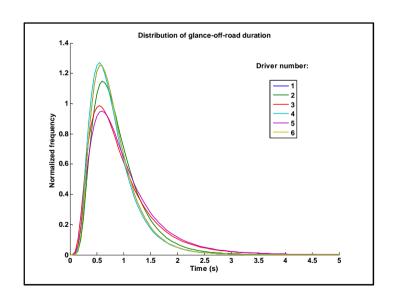
Distraction

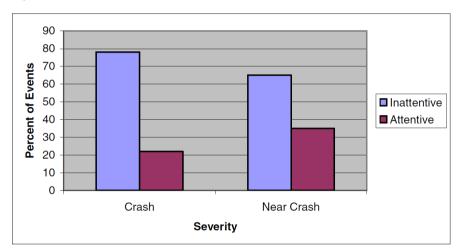

"Driver distraction is a diversion of attention away from activities critical for safe driving toward a competing activity."

Lee, Young, and Regan (2009)

Different approaches to distraction detection

- Positive verification of Eyes-OFF-road (using "Gaze-tracking")
 - High demands on detector at all gaze angles
- Positive verification of Eyes-ON-road (using direct detection/classification)
 - If no eye(s) detected → infer driver "eyes-off-road"





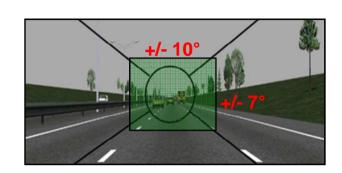
For how long does the driver look away?

- Most glances off road in highway driving are shorter than one second.
- Glances away from road longer than two seconds may have a negative impact on safe driving (cf NHTSA design guidelines)

Number of events with cause **inattention to the forward roadway** in the 100-CAR study (Neal et al.)

EoR system

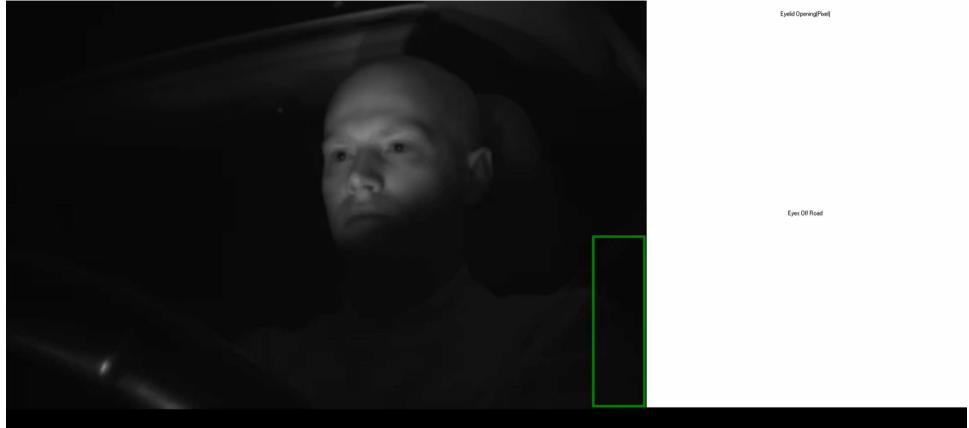
Autoliv / ITF-OECD / 2014 / slide7


- Detects if the driver:
 - looks away from the road
 - is sleepy/drowsy

- Use for
 - Road Focus Reminder
 - Adaptivity for Active Safety functions like LDW and FCW
 - Enabling advanced automated driving systems

Visual Distraction Detection

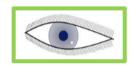
- An algorithm identifies status of 'eyes-on-road' to determine if the driver is looking forward
- A timer identifies both single long glances and repeated short glances of Eyes Off Road



Eyes On the Road video (with head movement)

Autonv

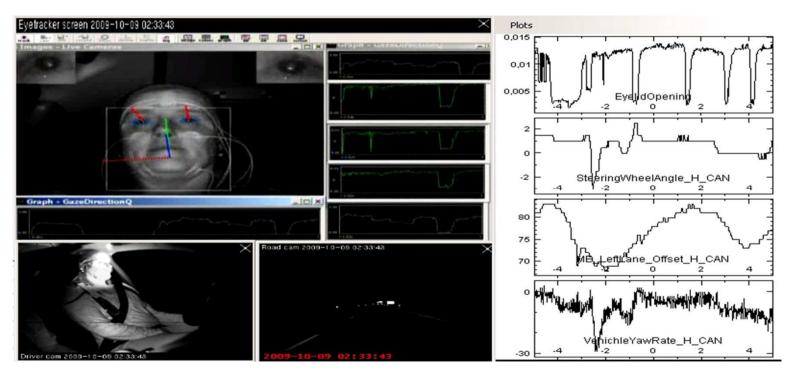
Eyes On the Road video (without head movement)



Autonv

Detecting 'Eyes on the road'

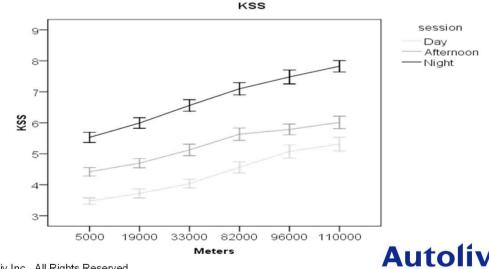
Robust detection approach



- Detects eyes directly not dependent on clear view of entire face
- Shorter chain of events
- Works with any type of glasses

Drowsiness

Data collection


Public roads, 83 drivers, each 3x100 minutes, day & night

KSS – Karolinska sleepiness scale

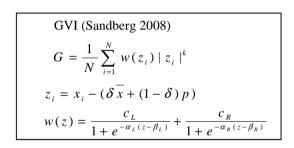
- + Validated
- + Simple to collect
- + Simple to understand immediately ready for analysis
- Training needed
- Some offset for inexperienced participants?

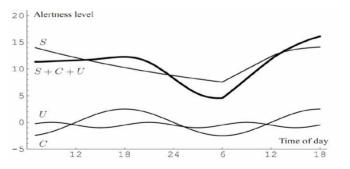
KSS	Verbal description
1	extremely alert
2	very alert
3	alert
4	rather alert
5	neither alert nor sleepy
6	some signs of sleepiness
7	sleepy, but no effort to keep alert
8	sleepy, some effort to keep alert
9	very sleepy, great effort to keep alert, fighting sleep

Example of driver sleepiness indicators

Blink duration:

Mean blink duration (Dinges, 2005)


Lane Keeping variability:

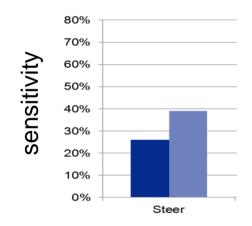

Variability in Steering wheel position or Lane Position. e.g. using Generic Variability Indicator (Sandberg 2008)

Time-of-day:

Expected drowsiness with regard to time of day – circadian rhythm (Åkerstedt. T. & Folkard. S. 1997)

Evaluation Method

- Fitness is the mean value of sensitivity and specificity
- Fitness is related to the proportion of the time where the algorithm is correct

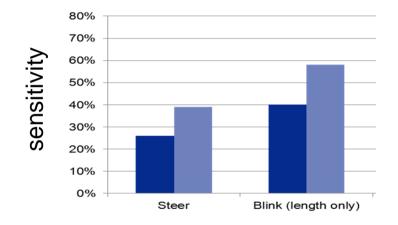

sensitivit
$$y = \frac{A}{A + C}$$
= probability of correct
classification of **drowsy**
driverspecificit $y = \frac{D}{B + D}$ = probability of correct
classification of **alert** driver

$$fitness = \frac{sensitivit \quad y + specificit \quad y}{2}$$

Drowsiness tests on roads

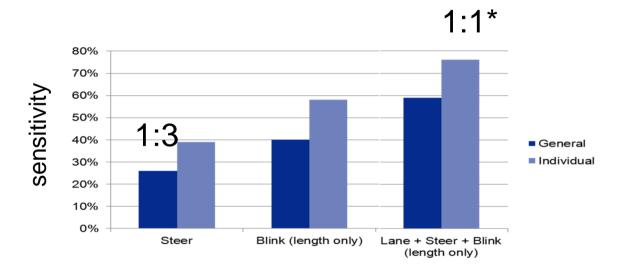
Forced Minimum 99.5% specificity

Sensitivity = TP/(TP+FN)
probability of correct classification of **drowsy** driver


Specificity = TN/(TN+FP)
probability of correct classification of alert driver

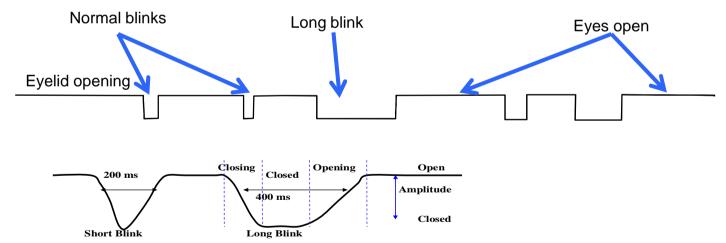
True positive = correctly identified
False negative = incorrectly rejected
True negative = correctly rejected
False positive = incorrectly identified

Drowsiness tests on roads


Forced Minimum 99.5% specificity

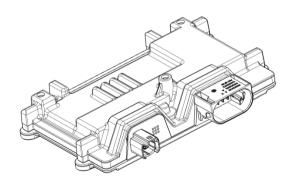
Drowsiness tests on roads

Forced Minimum 99.5% specificity


* 80% sensitivity and 99,5% specificity results in an estimated real world ratio of about 1:1 ratio between true and false positives

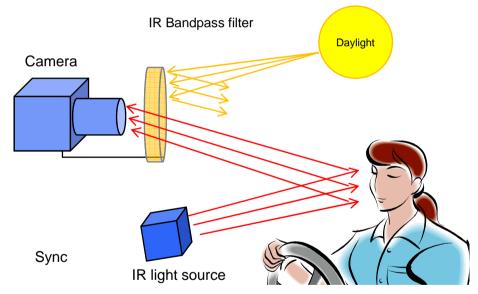
Drowsiness detection

- EOR detects blinks and blink duration.
- EOR can detect closing & opening rates



Basic Hardware Setup

- One camera simple, cost effective
- IR-illumination
- ECU
 - Central Safety Domain Controller
 - Or integrated with camera



IR-illuminator

Constant lighting conditions, independent of darkness/direct sunlight:

- Ultra short IR flash, synchronized with camera exposure time
- Filter blocks most of daylight
- IR intensity matches sunlight

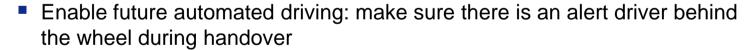
Camera locations – many options

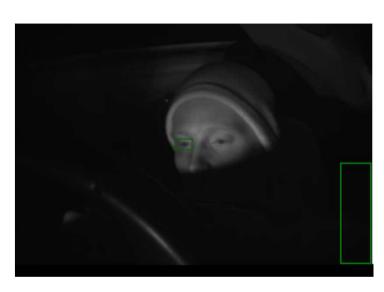
EOR tested in Autoliv's demo car:

- A-pillar base
- Cluster
- Rear view mirror

ValidationField Operational Test

- Autoliv, Volvo Cars, ÅF
- Starts in April
- 10 cars





Conclusions

EOR with appropriate HMI design can:

- Remind driver to focus on the road
- Wake up drowsy driver (better than with today's sensors)
- Improve FCW, LKA... (less FP, more TP)

Thank you for your attention!

Comments and questions greatly appreciated:

johan.g.karlsson@autoliv.com kyriakos.vavalidis@autoliv.com

Autoliv

In 2013, Autoliv's products saved over 30,000 lives

