Life Cycle Analysis of Transport Options

Rangan Banerjee Forbes Marshall Chair Professor

Department of Energy Science and Engineering IIT Bombay

14 April 2021 – ITF Workshop Life Cycle Assessment Methods to Support India's Efforts to Decarbonise Transport

Drivers for Transport Sector

- •Urban Air Quality- Local Emissions and Health
- •Climate Change- Low carbon
- Development, Income increase and mobility
- •COVID Health and Safety

Choices

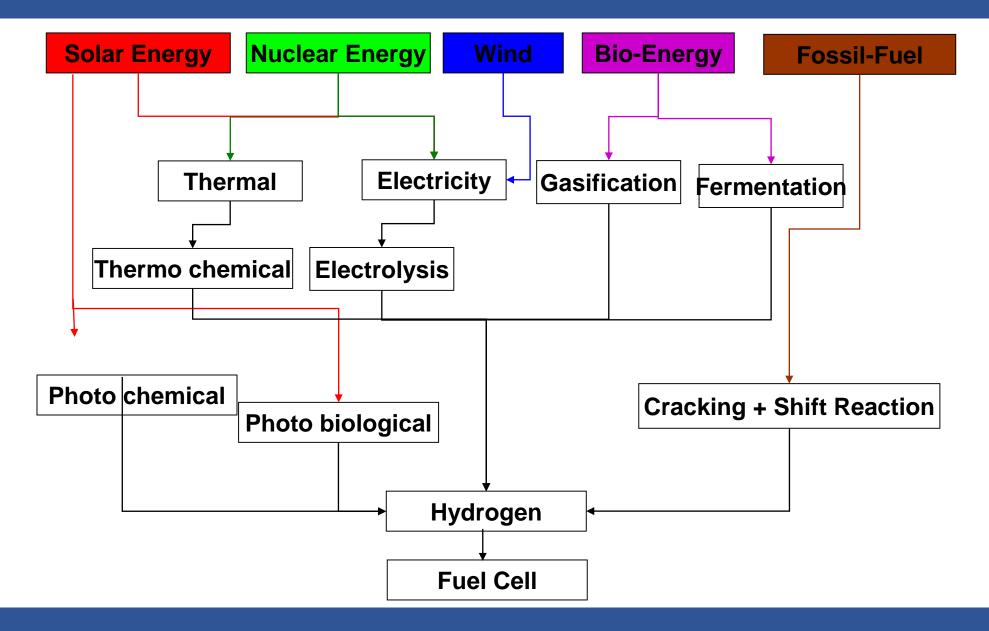
- Modes- Non motorized- walking, cycle
- Motorised- Two wheeler Petrol, Electric, Hydrogen

Three wheeler- petrol, LPG, CNG, Electric, Hydrogen, Four Wheeler (Car)- petrol, LPG, CNG, Electric, Hydrogen, Ethanol, Biodiesel, Hybrid...

Public Transport – Trains, Buses, Bus Rapid Transit. Metros, High Speed Train, Air craft, Ships, Water transport (multiple fuel options) Hyperloop....

Freight – Tempos, LCVs, Trucks, Heavy duty tricks (Diesel, Hybrid, Electric, Hydrogen)

Choices of technology within an option – e.g Battery type


Criteria

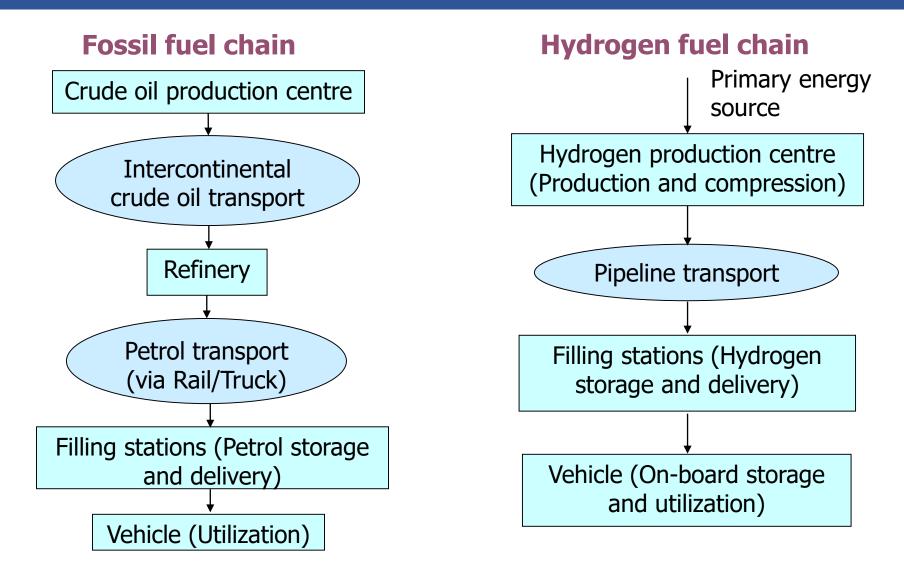
- Cost- Capital cost
 - Operating Cost
 - Annualised life cycle cost/ p-km (or freight- km)
- Speed/ Travel time/ Total time (including waiting time)
- Convenience
- Emissions Local
- Emissions Global- GHG- CO₂ equivalent
- Energy efficiency, Operational energy, embodied energy, Life cycle energy
- Space taken
- Infrastructure

Life Cycle Analysis Examples

- Hydrogen fuel chain for passenger car
- Related LCA
 - •LCA of Coal versus Gas based electricity
 - Energy and Carbon analysis for batteries (for micro-grids)
 - LCA trucks
 - Sustainability analysis of biofuels
 - Sustainability Analysis of Hyperloop

Hydrogen pathways

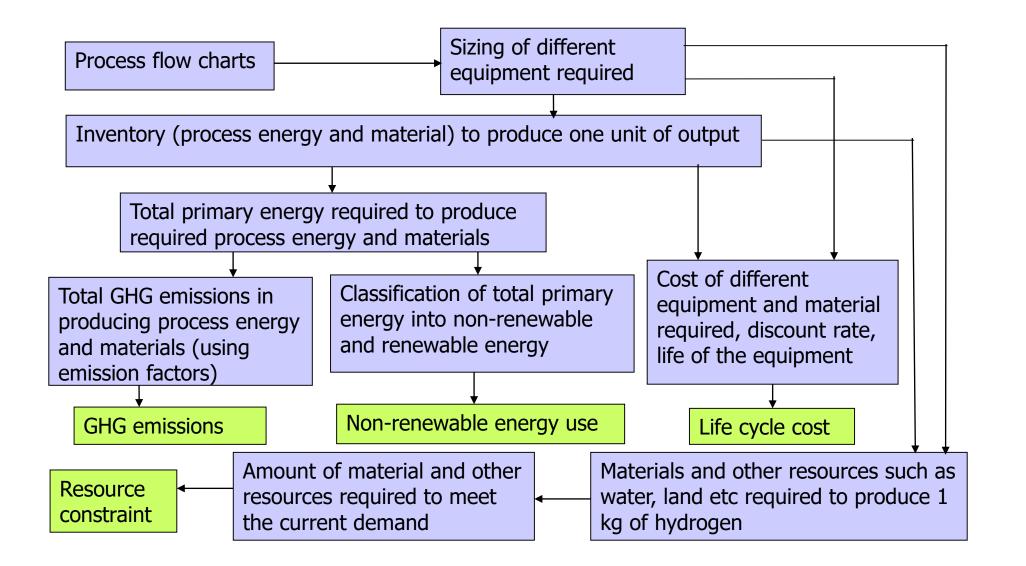
Base case Fossil fuel based fuel chain


- Small-size passenger car (Maruti 800) manufactured by Maruti Udyog Limited
 - Petrol fuelled,
 - 37 bhp (27 kW) IC engine

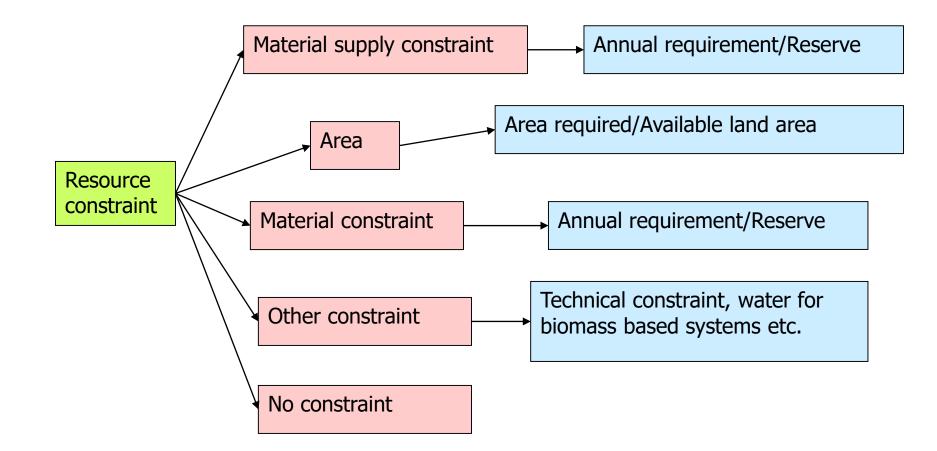
50% share in Indian passenger vehicle-market 560,000 units sold 2005-6

Study done in 2008

Fuel chains

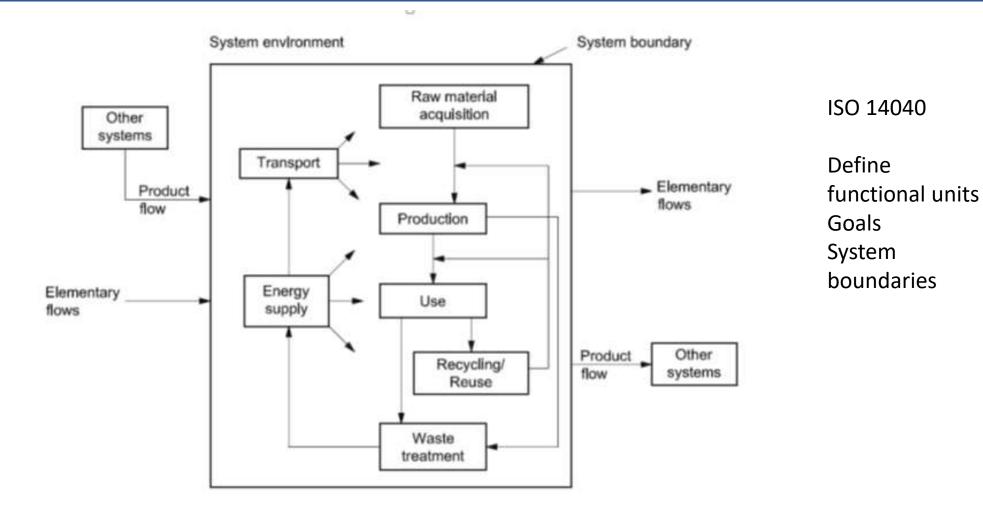

Comparison criteria

- Non-renewable energy consumption per km travel (MJ/km)
- Greenhouse gas emissions per km travel (g CO₂-eq/km)
- Cost per km travel (Rs./km)
 - Annualised life cycle costing (ALCC) method
 - Existing Indian prices.
 - If technology is not available commercially in India, international prices are used
- Resource constraints


Methodology

- Life cycle assessment (LCA)
 - All material and energy inputs to the process are identified
 - Total input energy required to extract, produce, and deliver a given energy output or end use
- Energy use and corresponding emissions during fabrication of PV, electrolyzer, wind machine etc. are also taken into account.

Methodology contd..

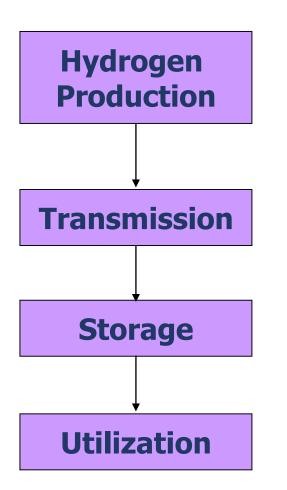


Resource constraint

Source: Manish S, Indu R Pillai, and Rangan Banerjee, "Sustainability analysis of renewables for climate change mitigation," *Energy for Sustainable Development*, vol. 10, no. 4, pp. 25-36, 2006.

Life Cycle Analysis

http://www.cscses.com/uploads/2016328/20160328110518251825.pdf

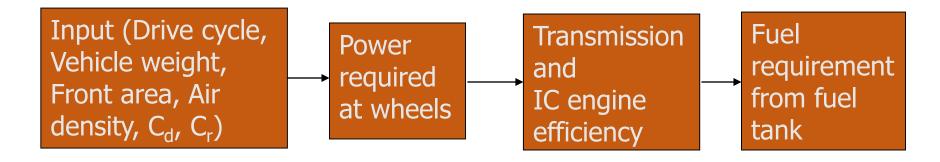

Rangan Banerjee

Vehicle Application

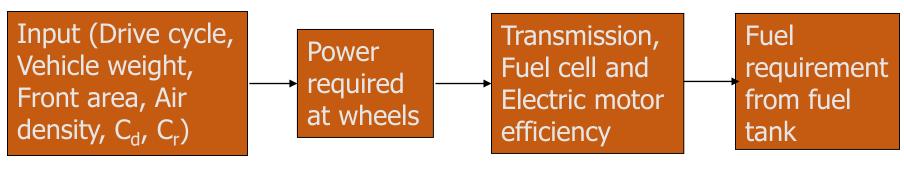
Weight (excl engine +tank) 550 kg
Passengers (max) 350 kg
Maruti
CR 0.01
CD 0.4
2m ² front area
100 km travel /day

	Tank	Engine
Petrol	40 kg	60 kg
CNG	140 kg	60 kg
FC	130 kg	15 M +15 FC kg

Hydrogen fuel chain – different routes

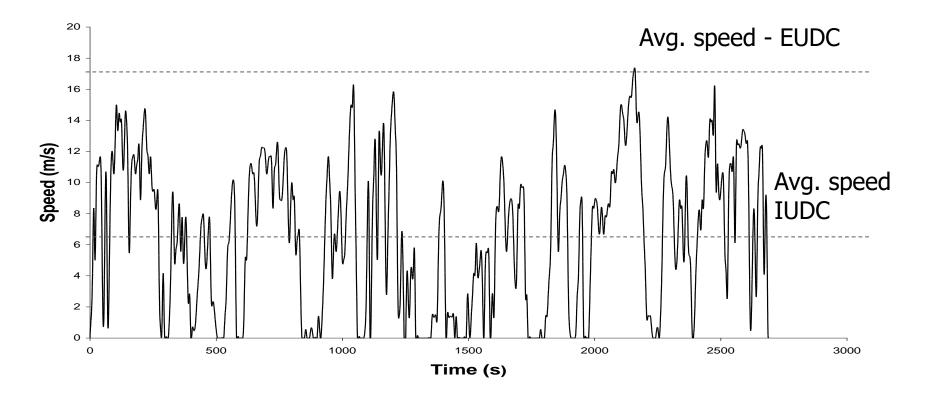

Steam methane reforming (SMR), Coal gasification, Water electrolysis, Renewable hydrogen (Photovoltaic-electrolysis, Wind power-electrolysis, Biomass gasification, Biological methods)

Pipeline transport, transport via truck and rail


Compressed hydrogen storage, Metal hydrides, Liquid hydrogen storage, Complex chemical hydrides

Fuel cells (PEMFC), IC engine

Energy analysis


IC engine vehicle

Fuel cell vehicle

Source: Manish S and Rangan Banerjee, "Techno-economic assessment of fuel cell vehicles for India," 16th World hydrogen energy conference, Lyon (France), 2006.

Indian urban drive cycle

Indian urban drive cycle :-

Low average speed (23.4 km/h) and rapid accelerations (1.73 to -2.1 m/s²) *European urban drive cycle* :-

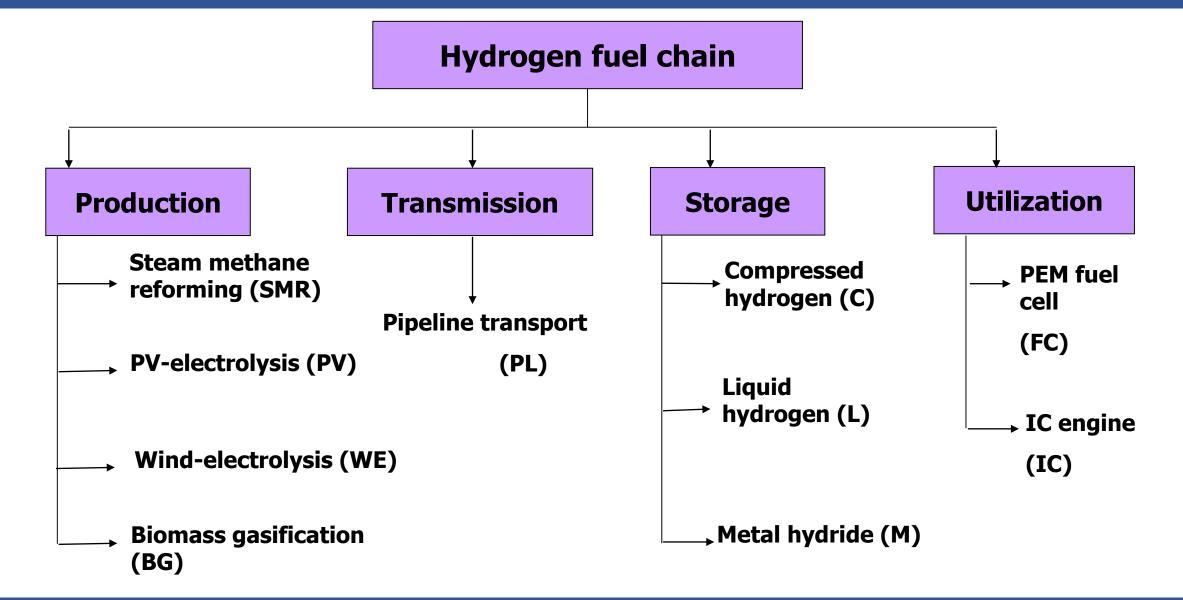
Average speed (62.4 km/h) and accelerations from 0.83 to -1.4 m/s^2

Power required at wheels

- Three forces acts on the vehicle (Assumption:- vehicle is running on a straight road with a zero gradient). These are
 - Aerodynamic drag $\{F_{Drag}(t)\} = 0.5\rho Av(t)^2 C_d$
 - Frictional resistance {F_{Friction}(t)} = mgC_r
 - Inertial force $\{F_{Inertia}(t)\} = mf \{f=dv(t)/dt\}$
- $F_{Total}(t) = F_{Drag}(t) + F_{Friction}(t) + F_{Inertia}(t)$
- $P_{Wheel}(t) = F_{Total}(t) \times v(t)$

Data used for base case vehicle

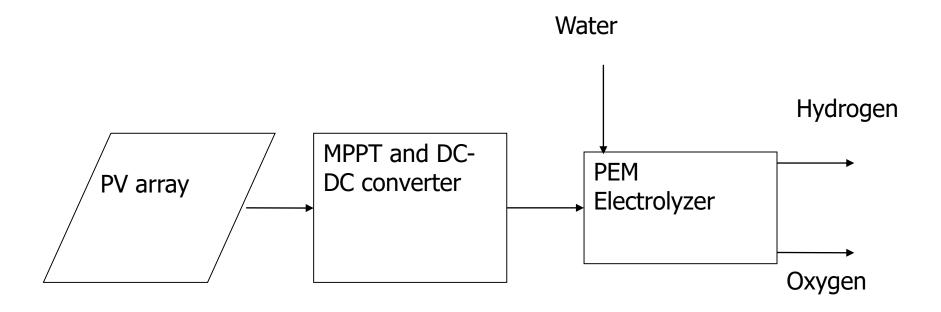
Parameter	Value
Air density (kg/m ³)	1.2
Coefficient of drag resistance	0.4
Coefficient of rolling resistance	0.01
Cargo weight (kg)	250
Frontal area (m ²)	2
Transmission efficiency	0.7
Transmission weight (kg)	114
IC engine weight (kg)	90
Fuel tank weight (kg)	40
Fuel capacity (kg)	24
Vehicle body weight (kg)	406
Total weight (kg)	900


Result for base case vehicle

Parameter	Value
Driving range (km)	434
Cost (Rs/km)	2.8 <mark>(0.34)</mark>
Non-renewable energy use during operation (MJ/km)	2.6
GHG emissions (g/km)	180

Driving range of hydrogen vehicles should be at least half (~217 kms) for their public acceptance.

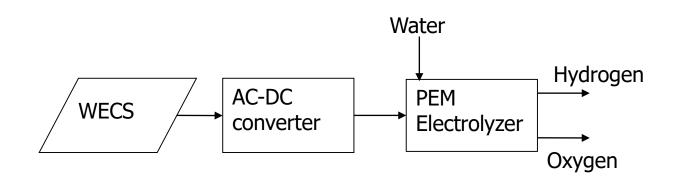
- Average daily travel Indian urban <100 kms.
- Vehicle to run for 2-3 days.


Hydrogen fuel chain – Options considered

Hydrogen production – Steam Methane Reforming (SMR)

- Feedstock Natural Gas
- SMR: $CH_4 + 2H_2O \rightarrow 4H_2 + CO_2$
- Life of plant 20 years
- Existing NG price Rs 8/Nm³,
- Price of Hydrogen Rs 48/ kg 4.3 Rs/Nm³ or 400 Rs/GJ

PV-Electrolyzer System



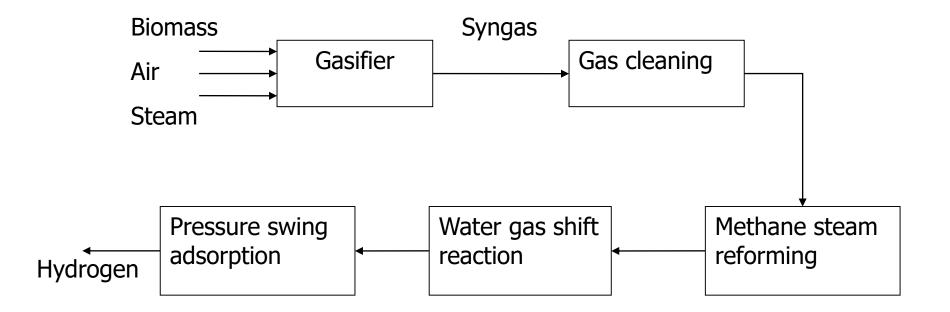
• HYSOLAR (Saudi Arabia) 350 kW Alkaline electrolyser 65 m³/h peak (German-Saudi) ~5.8 kg/hr

PV-Hydrogen

- 100 kg hydrogen/ day
- Electrolyzer efficiency 70%
- Annual capacity factor 20%
- Module area 8800 m²
- 1300 kW_p PV, 1200 kW electrolyzer

Wind-Electrolyzer

10 Nm³/h (~0.9kg/h) 48 kW electrolyzer Two wind turbines 600 kW (peak) each Source:


Utsira Plant

Norsk Hydro

Wind-Electrolyzer

- 100 kg hydrogen/ day
- Electrolyzer efficiency 70%
- Annual capacity factor 30%
- 880 kW (peak), 784 kW electrolyzer

Biomass gasifier-reformer

Many configurations possible – atmospheric, pressurised, air blown, oxygen blown

No large scale systems

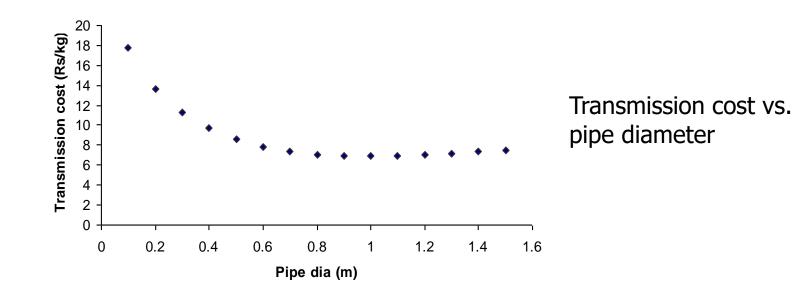
Comparison of hydrogen production methods

Indicator	Unit	SMR	PV- electrolysis	WECS- electrol.	Biomass Gasification
Non-renewable energy use	MJ/kg	182	67.5	12.4	67.7
GHG emission	kg/kg	12.8	3.75	0.98	5.4
Life cycle cost*	Rs/kg	48	1220	400	44.7

*At 10% discount rate Average load factors; PV-0.2, WECS-0.3, Biomass gasification-0.65

Hydrogen transmission

- Can be transported as a compressed gas, a cryogenic liquid (and organic liquid) or as a solid metal hydride.
- Via pipeline, trucks, rail etc.
- Compressed hydrogen via pipeline
 - US, Canada and Europe
 - Typical operating pressures 1-2 MPa
 - Flow rates 300-8900 kg/h


Hydrogen transmission- contd..

- 210 km long 0.25 m diameter pipeline in operation in Germany since 1939 carrying 8900 kg/h at 2 MPa
- The longest pipeline (400 km, from Northern France to Belgium) owned by Air Liquide.
- In US, total 720 km pipeline along Gulf coast and Great lakes.

Results for transmission process

For 1 million kg/day, transmission distance 100 km, supply pressure 10 bar

Parameter	Value	Unit
Optimum pipe diameter	1	m
Transmission cost	6.93	Rs/kg
GHG emissions	0.99	kg/kg

Hydrogen on-board storage and utilization

- Demo hydrogen vehicles : Daimler-Benz, Honda, Toyota, Ford, BMW, General Motors, Daimler-Chrysler, Mazda
- On-board storage: compressed gas, liquid hydrogen, metal hydride, organic liquid
- Energy conversion device: internal combustion engine, fuel cell

Vehicles with compressed hydrogen storage

Name of the vehicle/Company	Energy conversion device	Net power output	Storage system	Range of Vehicle (km)
NEBUS (bus) (Daimler-Benz)	Fuel cells 10 stacks of 25kW	190 kW	150 litre cylinders at 300 bar	250
Zebus (bus) (Ballard power systems)	Fuel cells	205 kW	Compressed hydrogen	360
FCX (Car) (Honda)	Fuel Cells	100 kW	171 litre at 350 bar	570
FCHV-4 (car) (Toyota)	PEM fuel cell + Battery	80 kW	350 bar	250
Model U (Ford motor co.)	Internal combustion Engine	113 kW @4500rpm	7 kg @690 bar	
NECAR 2 (Daimler Benz)	Fuel cell	50 kW	Compressed gas	

Vehicles with liquid hydrogen storage

Name of the vehicle/Company	Energy conversion device	Net power output	Storage system	Range of Vehicle (km)
BMW 750-hl (BMW Corporation)	Hybrid, 12 cylinder combustion engine		140 liters, cryo storage at -253 ⁰ C	400
Hydrogen 3 (General motors)	Fuel cell	60 kW	4.6 kg Liquid Hydrogen at -253°C	400
Necar4 (Daimler Chrysler)	Fuel cell	70 kW		450

Vehicles with organic liquid storage

Name of the vehicle/Company	Energy conversion device	Net power output	Storage system
NECAR 5 (Daimler Chrysler)	Fuel cell	75 kW	Methanol (On board reformer)
FC5 (Ford Motor company)	Fuel cell	65kW	do
Mazda Premacy (Ford Motor company)	Fuel cell	65kW	do
FCX-V2 (Honda Motor company)	Fuel cell	60kW	do

Vehicles with metal hydride storage system

Name of the vehicle/Company	Energy conversion device	Net power output	Storage system
HRX2 (Mazda Motor Corporation)	Wankel Rotory Engine	65kW	TiFe
FCX-V1 (Honda Motor company)	Fuel cell	60kW	LaNi ₅

On-board storage + utilization

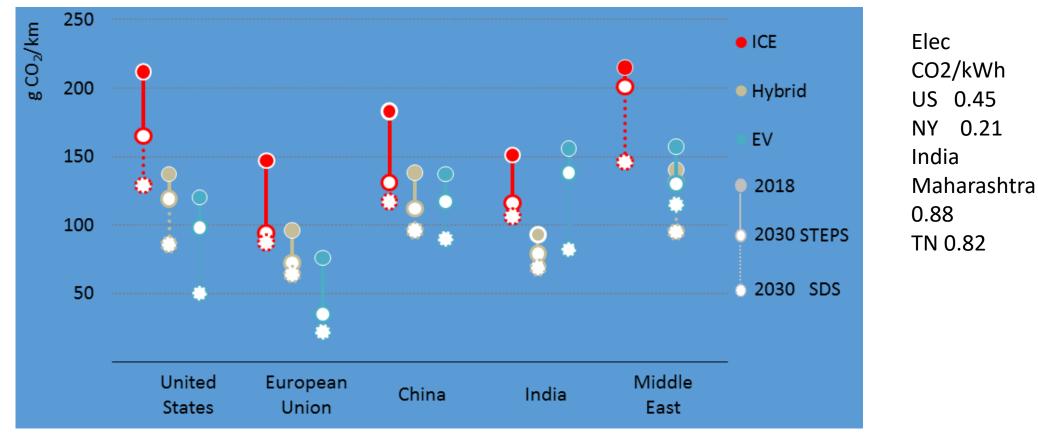
Option		Cost	GHG	Non-	H ₂ use
On-board storage	Energy conversion device	- (Rs/km)	g/km	renewable energy use (MJ/km)	MJ/km
Compressed H ₂	Fuel cell	21.03	17.8	0.24	0.83
Liquid H ₂	Fuel cell	21.06	17.8	0.24	0.80
Metal hydride	Fuel cell	21.92	26.9	0.36	0.88
Compressed H ₂	IC engine	1.23	0*	0*	2.47
Liquid H ₂	IC engine	1.35	0*	0*	2.32
Metal hydride	IC engine	4.17	32	0.42	2.74

*Energy use and emissions in base case vehicle manufacturing neglected

Results for hydrogen storage (at filling stations)

Parameter	Compressed hydrogen	Liquid hydrogen	Metal hydride	Unit
Delivery and storage cost	8.75	42.6	33.7	Rs/kg
GHG emissions	1.24	7.2	0.28	kg/kg
Non-renewable energy use	12.72	74	3.84	MJ/kg

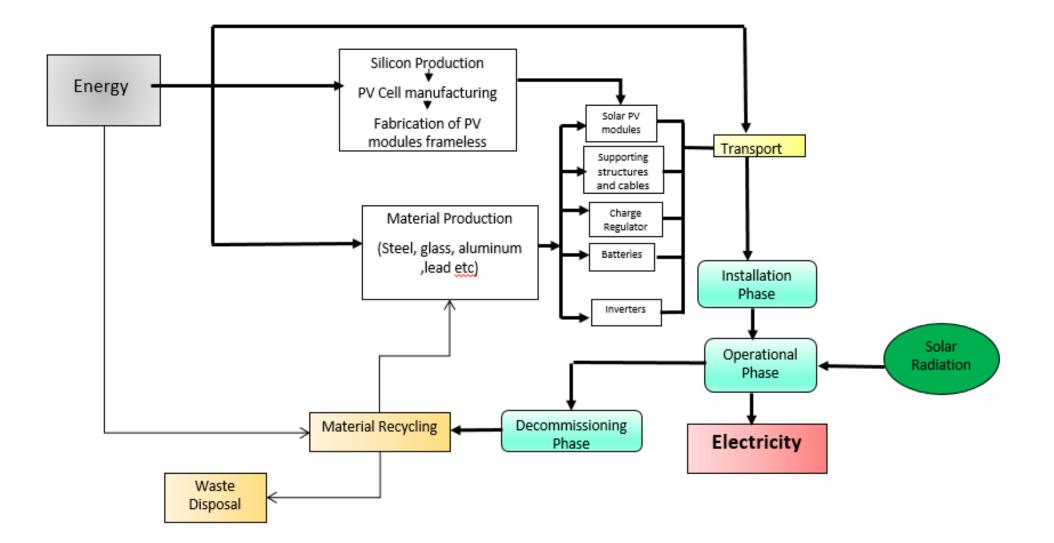
Comparison of routes


Base case 2.5 Rs/km 180 g/km

Route	SMR – PL-C-IC	SMR-PL- C- FC	PV- PL-C- FC	W-PL-C- FC	BG-PL-C- IC	BG-PL-C- FC
Specific Fuel consumption (g/km)	20.8	6.9	6.9	6.9	20.8	6.9
ALCC Cost Rs/ km	2.5	21.5	29.6	25.3	2.5-4	20.4
GHG emissions CO ₂ /km	310	122	59.1	43.4	157.8	70.8

Conclusions (Hydrogen Vehicles)

- Renewable hydrogen based fuel chains viable based on GHG emission and non-renewable energy use criteria
- Cost (Rs/km) higher (for photovoltaics, electrolyzer and fuel-cell based system) than existing petrol based fuel chain.
- IC engine vehicles lower cost but higher energy consumption than fuel cell vehicles.
- Hydrogen fuel chain based on SMR process (with compressed hydrogen storage and IC engine) is economically viable.
 However this fuel chain has higher GHG emissions.


Carbon emissions of different car powertrains by region

The relative carbon footprint of ICE versus electric cars strongly depends on the power sector mix

Source: World Energy Outlook 2019 IEA Used with permission

Life Cycle Energy Analysis Flow diagram

Comparison of different Battery options

Battery Technology	Cycle Life @ 80% DoD (Manufacture)	Maximum Service Life in years (Manufacturer)	Life in years calculated assuming 1 cycle /day	Efficiency #1	Specific Energy (Wh/kg)	Weight of battery cell (kg)	Energy Rating of battery (Wh)
VRLA	700#1-1800#2	10#2	2-5	84%	32	157	5024
Li ion	5000-7000#1	15#4	13-15	92%	91	19	1729
NiCd	1000-1500#1	10#1	3-4	80%	40	69	2745
NiMH	1500-2000#1	8#1	4-6	85%	55	10	360
NaS	5625 (4500 ^{#3} @ 100% DoD)	15#3	15	90%	150	5.5	825
LiS	1400@80% #5 DoD	5	3.5	97%	152	0.138	20.97

#1. Carl Johan Rydh, Energy analysis of batteries in photovoltaic systems. Part I:. Energy Conservation and Management, 46, 1980-2000,

2005

#2. Tubular gel 2V VRLA battery Technical Manual, <u>http://www.exide4u.com/solatron-tubular-gel-vrla-2v-cell</u>

#3. NGK Insulators NaS Battery, https://www.ngk.co.jp/nas/specs/

#4. Castillo, "Grid-scale energy storage applications in renewable energy integration: A survey", 2014

#5 http://oxisenergy.com/wp-content/uploads/2016/10/OXIS-Li-S-Long-Life-Cell-v4.01.pdf

Comparison of different Battery options

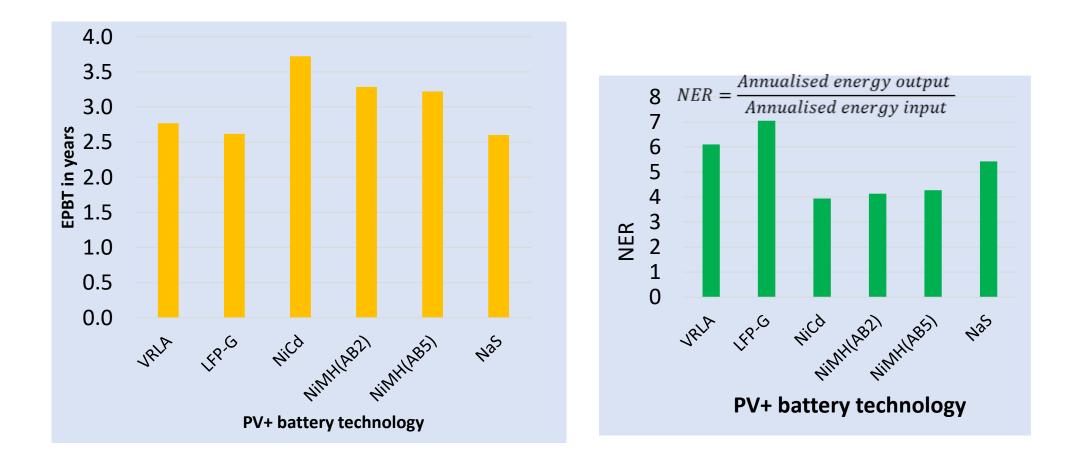
Battery Technology	Cycle Life @ 80% DoD (Manufacture)	Maximum Service Life in years (Manufacturer)	Life in years calculated assuming 1 cycle /day	Efficiency #1	Specific Energy (Wh/kg)	Weight of battery cell (kg)	Energy Rating of battery (Wh)
VRLA	700#1-1800#2	10#2	2-5	84%	32	157	5024
Li ion	5000-7000#1	15#4	13-15	92%	91	19	1729
NiCd	1000-1500#1	10#1	3-4	80%	40	69	2745
NiMH	1500-2000#1	8#1	4-6	85%	55	10	360
NaS	5625 (4500 ^{#3} @ 100% DoD)	15#3	15	90%	150	5.5	825
LiS	1400@80% #5 DoD	5	3.5	97%	152	0.138	20.97

#1. Carl Johan Rydh, Energy analysis of batteries in photovoltaic systems. Part I:. Energy Conservation and Management, 46, 1980-2000,

2005

#2. Tubular gel 2V VRLA battery Technical Manual, <u>http://www.exide4u.com/solatron-tubular-gel-vrla-2v-cell</u>

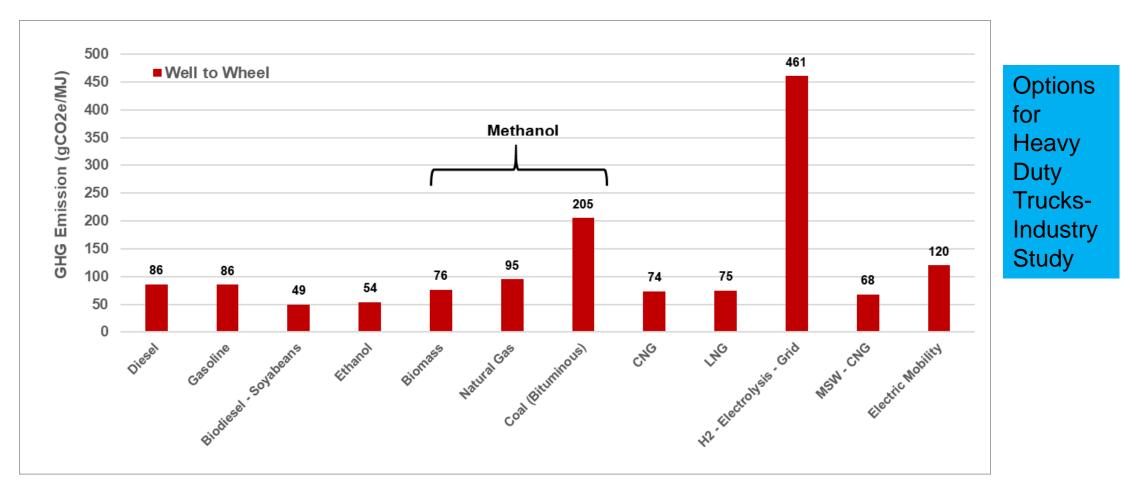
#3. NGK Insulators NaS Battery, https://www.ngk.co.jp/nas/specs/


#4. Castillo, "Grid-scale energy storage applications in renewable energy integration: A survey", 2014

#5 http://oxisenergy.com/wp-content/uploads/2016/10/OXIS-Li-S-Long-Life-Cell-v4.01.pdf

Comparison of PV-Battery

PV+battery configuration	Energy Pay Back Time(years)	Net Energy Ratio	Energy Pay back (% of cycle life)	Emission Factor (kgCO ₂ /kWh of output)
VRLA	2.75	4.63	20.10	0.26
LFP-G	2.62	6.55	6.88	0.14
NiMH(AB ₂)	3.44	2.52	36.92	0.42
NiMH(AB ₅)	3.4	2.63	34.12	0.42
NaS	4.3	3.9	7.58	0.67
NiCd	2.69	4.2	64.12	0.091
LiS	3.38	2.8	67.56	0.31
	y Input to the system Inergy Output	n NE	$R = \frac{Annualised en}{Annualised en}$	ergy output nergy input Das et al., CTEP, Spring

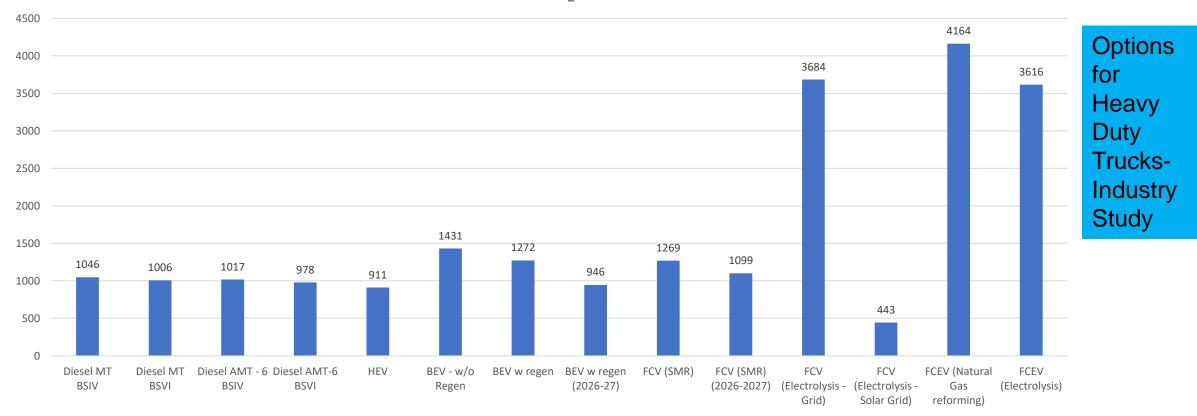

Comparison of Energy Pay Back Time & Net Energy Ratio

Energy Analysis – Hydrogen Storage

Comparison of different storage options for 1 km ride				
	Compressed tank	Cryogenic tank	FeTi hydride	Mg hydride
H2 consumption (gms)	6.24	6.4	8.04	9.7
Direct energy required to travel (kJ)	749	768	965.4	1164
Energy required to produce and store H2 (kJ)	1260.7	2172.7	1473.7	1777
Energy required to produce tank(kJ)	34.2	15.6	177.3	60
Total energy required (kJ)	2043.9	2956.3	2616.4	3001.5

Well to Wheel (WTW) GHG Emissions for Fuels

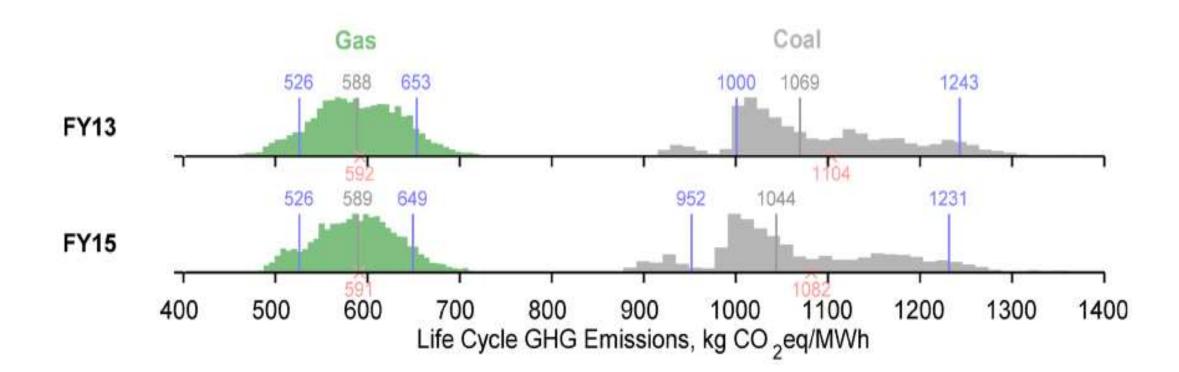
- Natural Gas and Bio fuels have the least GHG foot print
- For Electric Mobility GHG footprint will get attractive when Renewable mix increases


Note: India electricity mix is dominated by coal-based thermal power plants resulting in higher WTW GHG emissions

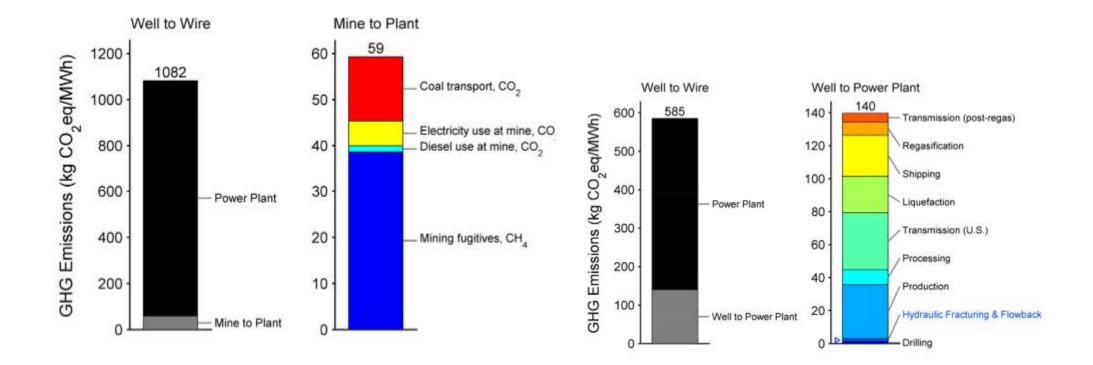
Source: EU WTT – 2014, India and EU Electricity Mix – Above numbers are adjusted for Indian Electricity mix where applicable

Cummins

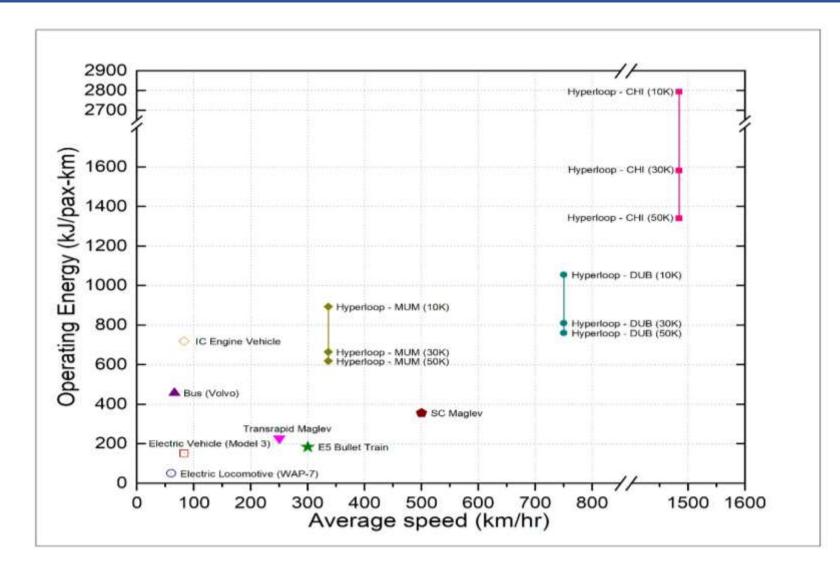
Life Cycle CO₂


Life Cycle CO₂(in ton)

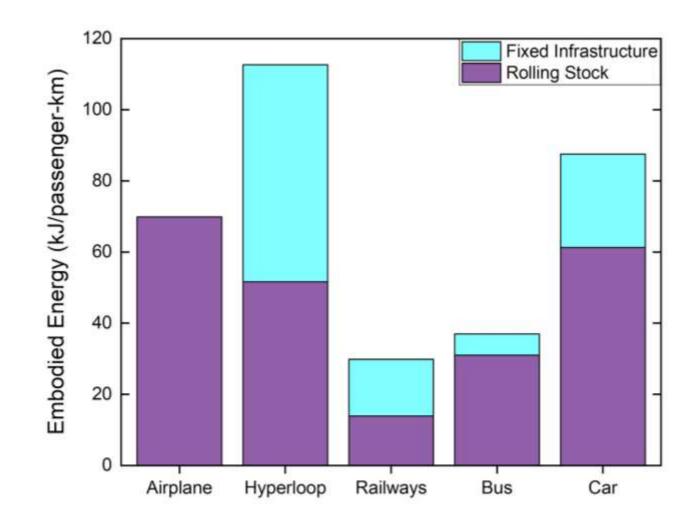
Annual Run km	100000
Years	10
Lifecycle Kms	1000000


Route used for simulation: Pune – Bangalore – Pune BSVI commercial Vehicle

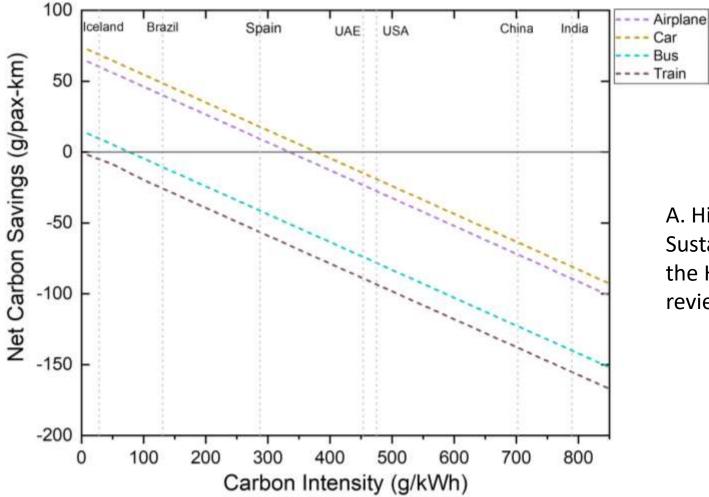
GHG Emissions of Power plants


Environ. Sci. Technol.2019, 53, 539-549

Coal and Gas power plant GHG emissions



Environ. Sci. Technol.2019, 53, 539–549


Operating Energy comparisona

Embodied Energy alternative transport

Hyperloop- Carbon Savings

A. Hirde et al: Sustainability Analysis of the Hyperloop- under review

Conclusions

- Life cycle Analysis- Energy and carbon can identify viability and sustainability of options
- Screening of new technologies
- Replacement of energy and carbon intensive materials, processes
- Sensitivity to grid mix Electricity versus hydrogen
- Cost, LCA,- Energy, Carbon, Land ,Water multi criteria
- Overall impact on sustainability, economy, employment

References

- P. L. Spath, M. K. Mann, Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolyses, NREL / MP-560-35404, February 2004, Colorado, USDOE.
- Pehnt M, "Life-cycle assessment of fuel cell stacks," International Journal of Hydrogen Energy, vol. 26, pp. 91-101, 2001.
- Newson E, Haueter TH, Hottinger P, Von Roth F, Scherer GWH, and Schucan TH, International Journal of Hydrogen Energy, vol. 23, no. 10, pp. 905-909, 1998.
- Sarkar A and Banerjee R, "Net energy analysis of hydrogen storage options," International Journal of Hydrogen Energy, vol. 30, pp. 867-877, 2005.
- Syed MT, Sherif SA, Veziroglu TN, and Sheffield JW, "An economic analysis of three hydrogen liquefaction systems," *International Journal of Hydrogen Energy*, vol. 23, no. 7, pp. 565-576, 1998.
- Manish S and Rangan Banerjee, "Techno-economic assessment of fuel cell vehicles for India," 16th World hydrogen energy conference, Lyon (France), 2006.
- S. Manish, and **Banerjee. R**., (2008) The technoeconomic assessment of the hydrogen fuel chain, *International Journal of Nuclear Hydrogen Production and Applications (IJNHPA)*, 1(4), pp. 309-323.
- Das, J., Abraham, A. P., Ghosh, P.C. and **Banerjee. R**., (2018) Life cycle energy and carbon footprint analysis of photovoltaic battery microgrid system in India, *Clean Technologies and Environmental Policy*, Springer, (20)1, pp 65-80.
- Mallapragada, D. S., Naik, I., Ganesan, K. **Banerjee. R**. and Laurenzi, I. J., (2018), Life Cycle Greenhouse Gas Impacts of Coal and Imported Gas-Based Power Generation in the Indian Context, *Environmental Science & Technology*, American Chemical Society, 53 (1), pp 539–549.
- Amos WA, "Costs of storing and transporting hydrogen," National Renewable Energy Laboratory, NREL/TP-570-25106, 1998.
- J. R. Bolton, Solar Photoproduction of Hydrogen, Solar Energy, Vol 57, Wol, pp 37-50, 1996.

Acknowledgement: Anuradda. Ganesh(Cummins), Balkrishna Surve,

Thank you