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Research objectives

* Traditional travel surveys offer rich semantic data, but only one or few travel day
every 5-10 years

 Road-side, cordon, origin-destination surveys might be more frequent but one
trip only with limited semantic

 Long term aggregate dynamic possible using panel or pseudopanel analysis

 But short term dynamic analysis or intrapersonal variability analysis very limited

Continuous passive (big) data mean new perspectives for
dynamic behavioral analysis: potentials and limits
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Mobile phone probe data exploration

* Huge « passive » database with spatio-temporal information

* Possibility to 1dentify individuals’ presence in time and space

« ORANGE probe data: richer than CDR (call detail record), less dependent to
Individual communication behavior (handover, Location area update,

attach/detach events)
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Mobile phone data filtering and expansion

e Maximum Inter-event Time (MIT) < 180 minutes (a mobile switch on

should have at least one LAU every 3 hours)
* Entropy (H) < 0.9 (avoid machine-to-machine devices)
* Number of observations (NO) > 4 (for trip identification)
 Household home location identification (for expansion to whole

population, expansion factors 3.5-10)

Data base represents 50% of initial mobile phone devices
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Mobile phone “ground truth” validation
Comparison with Rhone-Alpes travel survey
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Mobile phone/HTS temporal profile

Mobile phone temporal profile for whole Rhone-Alpes needs to be

corrected (smaller peak especially in morning)
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Mobile phone — various temporal profile

« Rhone-Alpes spatial clustering (77 zones) based on departure time
distribution

* Profile based on origin (without intrazonal trips)

Expanded Demand
Expanded Demand
Expanded Demand

rural areas urban areas mIX areas very dense
urban areas
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Smart card data for Lyon conurbation

* Lyon conurbation (1.3 million inhabitants) transit network transaction
only at vehicle boarding (including transfer)
« Smart card (80% of validation, same Id over a long period)
« Magnetic paper ticket (20% of validation, without Id)

* AVL (Automatic vehicle location)
» Automated passenger counting system (bus, tramway, subway)
* Origin-destination surveys (on board, all routes at least every 5 years)

* Household travel survey (every 10 years, nearly 1% stratified sampling,
face-to-face)
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Smart card data processing and expansion

Data correction and imputation

« Missing data imputation + deduplication

 Transfer identification to transform trip-legs into trips (rules from literature)

* Destination inference rules only for smart card data (same Id): 80.8% success
 Fraud (or non-validation) represents 21% of total transit trips

Data expansion
* Transit trips with alighting location: = 50% of total transit trips

 Expansion with non uniform scaling factors based on route/subway station passenger
counting (= 50k scaling factors)
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Smart card data “ground truth” validation

Smart card Public transport origin- Household travel

data destination survey survey (HTS)
Trip legs (million) 1.56 1.51 1.11
Trips (million) 1.10 1.16 0.80
Bus trip legs (%) 41 39 43
Tramway trip legs (%) 23 22 21
Subway trip legs (%) 37 39 36

* Much less trip-legs and trips in household survey compared to smart card
data and O-D survey which appears much more coherent
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Smart card data, spatial “ground truth” validation

Smart card data
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 Spatial comparison at O-D level (18 zones)
« Smart card data are much more coherent with transit O-D survey, than with
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Smart card analysis over 6 months

* Clustering on vector day
with/without trip

* We can identify 3 groups:

« Consistent transit users (regular user,
top dendrogram) 45% of users, 69%
of trips

 Low frequency users (middle
dendrogram) 14% - 1%

* Intermittent transit users (bottom of
dendrogram) 41% - 30%
» Day-to-day regularity does not
mean individual regularity
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Smart card analysis over 6 months — among regular users

 Cluster 1 very high transit use even
WE, no calendar effect

o Cluster 2 high use in week-days,
lower WE, no calendar

* Cluster 3 WE + calendar (holidays)
effects

* Cluster 4 regular use without clear
effect of WE and calendar

e Cluster 5 calendar and WE effects
with lower use (than C3)

 Cluster 6 sparse use but somewhat
regular without clear structure
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Big data base are not error free

* Mobile phone data need filtering process for example to suppress machine-to-
machine devices, or devices with too few data

« Smart card data need correction for example deduplication

 Data imputation i1s often required for missing information
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Big data base need expansion factors

 Even If big, data base are not exhaustive and do not represent whole
population

* Individuals might have no/several devices

« EXxpansion factors are required with spatio-temporal scaling factors
 External sources improve scaling quality
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Big data base require « ground truth » validation

* Passive big data sources evolve continuously
* Passive big data might be context-dependant

* Regular ground truth validation Is recommended using external information
not used In data processing
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But big data present a high potential for dynamic
analysis even at disaggregate level

After correction, debiasing process, expansion and validation continuous big
volume data is available allowing:

« Aggregate and disaggregate regularity/variability analysis

 Detailed spatio-temporal analysis including O-D matrix analysis at fine grain
level

* Intrapersonal variability when same Id is available over time
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Mobile phone data

» 2G et 3G signaling data collected during June
2017

From « Orange » mobile phone operator
For all Rhone-Alps Region

More than 2 millions users and 300M data per
day

Each trace is anonymized and with timestamp.
Mobile ID is changed every day

[ 3G cell tower voronoi coverage
A 2G/3G cell tower

Timestamp [ IMSI(D)  [LAC | évenement .
2017-06-01 201803567834 104 20865 CALL
11:53:33 ( J

¥
Localisation = Location Area Code (LAC)+ ID cellule
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EDR Rhone-Alpes data

 Regional travel survey (EDR)

e Conducted between 2012 and 2015 on all
Rhone-Alps region

« 38 000 individuals above 11 years old,
143 000 trips

* Territory zoning: 77 sampling sectors,
aggregated in 14 macro zones
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Cell phone activity: Indicators-based filtering

= Maximum Inter-event Time (MIT) [7am-10pm] < 180min (presence)

= Entropy (H)<0.9; HX) = =X p(x;) log(p(x;)) (uniformity)

= Number of observations (NO) = 4 (frequency should be = 8 with LAU)
» Filtering of outlier, uniform and machine-generated behaviors
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Stationary threshold choice

Stationary activity time threshold 60 minutes 50 minutes 40 minutes 30 minutes
Trips number EDR (in thousand) 2,211 2,260 2,344 2,448
Trips number Orange (in thousand) 1,607 1,743 1,905 2,108
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We keep 30-40 minutes threshold which seems reasonable regarding sector size
and gives the best results in comparison to EDR
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O-D expansion: expansion factor (2)

*Expansion Factor definition on sector level (77 sectors):
Population of sector; (over 11 years)
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EDR — Orange comparison (2)

For 30 min: y;; = 0.70 xx; +2,193  R2=0.96
For 40 min: y; = 0.66 x x; + 1,964 R?=0.96
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O-D pairs between the two Lyon sectors are badly estimated and strongly impact slope
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Signaling mobile phone data

 Entropy formula

HOO = = ) p(x) log(p(x)

The entropy measures the randomness of a system or on the opposite its
regularity. High measure of entropy corresponds to very regular signals like
those generated by machine-to-machine communications or IOT (Internet of
Things).
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