ASSESSING THE MERITS OF THE RANGE OF POTENTIAL REVENUE-RAISING OPTIONS: THEORETICAL AND PRACTICAL COSTS AND BENEFITS

Maria Börjesson

Professor VTI and Linköpings University

REASONS FOR TAXING ROAD TRANSPORT

- Marginal cost pricing
- Cost coverage
- Fiscal reasons

QUESTIONS

- What is the marginal external cost of road transport ?
- To what extent would marginal cost pricing cover costs?
- How to collect the tax?
 - Kilometre taxes
 - Urban tolls/parking charges
 - Ownership (time based taxes)
- Fiscal reasons

vti

EXTERNAL CONGESTION COSTS

- Most studies reports average values (if any)
 - Not so relevant
 - Very much focus on cities but most km are not driven there
- Simulate the spatial and temporal distribution of external congestion cost
- Area representing a small country
- Mälardalen (four million inhabitants),
- Similar "degree of urbanization" as NL and UK (Eurostat)
- 99 inh/km² (as Spain, Portugal the US)
- We simulate the tax for four time periods, including am- and pm-peak.

ADD THE OTHER EXTERNAL COST (OF EVS)

		Light vehicles € /km	Truck without trailer €/km	Truck with trailer €/km
Wear and tear on the road infrastructure				
Source: Nilsson et al. (2020)		0.004	0.057	0.123
Accidents Source:	Rural	0.001	0.027	0.027
Isacsson and Liss	Urban	0.026	0.027	0.027
(2016) and Transport	Weighted average			
Analysis (2021)				
		0.004	0.007	0.007
Emissions from	Dural	0.004	0.027	0.027
Emissions from	Rurai	0.000	0.001	0.001
brakes and tyres	l lab e a	0.000	0.001	0.001
Source: Iransport	Urban	0.001	0.044	0.062
analysis (Transport	Weighted average			
Analysis, 2021)		0.001	0.015	0.013
Noise (for trucks the source: Nilsson et al.				
(2020) for light vehicles Jochem (2016))		0.001	0.007	0.018
Sum, average 2019		0.009	0.105	0.180
Sum average 2040, assuming that valuation				
based on WTP increases with GDP by 1.5 %				
year		0.011	0.122	0.200
Congestion		To be simulated	To be simulated	To be simulated

METHOD

- National transport forecast model : accurate forecast the response to the congestion charges (Stockholm and Gothenburg)
- Optimal toll

$$\tau_{h,l}^{*} = \frac{\overline{W}t_{h,k}^{\prime}(D)D_{h,k}}{l_{k}} + \gamma \approx \frac{\frac{WD_{h,k}\Delta t_{h,k}}{\Delta D_{h,k}}}{l_{k}} + \gamma$$

h time period

k link

 $\tau_{h,l}^*$ optimal toll, \overline{W} value of time, D traffic volume, $t_{h,k}$ travel time l_k link length, γ other external cost

SCENARIO

- The Swedish Transport Administration's baseline scenario:
 - 60 percent EVs by 2040, driving cost 0.18 €/km
- Vary cost 0.14 0.18 €/km
- Population and economic growth: 30% higher traffic 2040 (rel 2017)

RESULT

- vkt median optimal kilometre tax 0.04 €/km (2019 fuel tax 0.06 €/km)
- vkt average tax 0.09 €/km

HUGE VARIATION

- 90 percent of the revenue collected on 10 percent of the road network.
- 50 percent of the revenue collected from 15 percent of the vkt
- Ekström et al. (2014): 96% of the welfare gain achieved by 70 toll stations

MEAN VALUES NOT SO INFORMATIVE

Time periodTotal road length 10^{3} kmDistribution of the congestion tax per link k, weighted by link length l_k : $\frac{\tau_{kt}l_k}{\Sigma_k l_k}$ Mean0%25%50%75%h=1 am peak 7-936.90.0160.0000.0000.0010.009h=2 pm peak 15-1836.90.0200.0000.0000.0010.0020.012h=3 midday 9-1536.90.0120.0030.0000.0000.0000.0000.002h=4 night 18-736.90.0130.0000.0000.0000.0010.002	
Mean 0% 25% 50% 75% h=1 am peak 7-9 36.9 0.016 0.000 0.000 0.001 0.009 h=2 pm peak 15-18 36.9 0.020 0.000 0.000 0.002 0.012 h=3 midday 9-15 36.9 0.012 0.000 0.000 0.001 0.008 h=4 night 18-7 36.9 0.013 0.000 0.000 0.000 0.002	
Mean 0% 25% 50% 75% h=1 am peak 7-9 36.9 0.016 0.000 0.000 0.001 0.009 h=2 pm peak 15-18 36.9 0.020 0.000 0.000 0.002 0.012 h=3 midday 9-15 36.9 0.012 0.000 0.000 0.001 0.008 h=4 night 18-7 36.9 0.013 0.000 0.000 0.002 0.002	
h=1 am peak 7-9 36.9 0.016 0.000 0.000 0.001 0.009 h=2 pm peak 15-18 36.9 0.020 0.000 0.000 0.002 0.012 h=3 midday 9-15 36.9 0.012 0.000 0.000 0.001 0.008 h=4 night 18-7 36.9 0.013 0.000 0.000 0.000 0.002 Average tax over all 36.9 0.013 0.000 0.000 0.007	100%
h=2 pm peak 15-18 36.9 0.020 0.000 0.002 0.012 h=3 midday 9-15 36.9 0.012 0.000 0.000 0.001 0.008 h=4 night 18-7 36.9 0.003 0.000 0.000 0.000 0.002 Average tax over all 36.9 0.013 0.000 0.000 0.001 0.007	99
h=3 midday 9-15 36.9 0.012 0.000 0.000 0.001 0.008 h=4 night 18-7 36.9 0.003 0.000 0.000 0.000 0.002 Average tax over all 36.9 0.013 0.000 0.000 0.001 0.002	246
h=4 night 18-7 36.9 0.003 0.000 0.000 0.002 Average tax over all 36.9 0.013 0.000 0.000 0.001 0.007	38
Average tax over all 36.9 0.013 0.000 0.001 0.007	0.37
periods n={1,2,3,4}	246
Time period Total VKT 10^6 Distribution of the congestion tax per link k, weighted by link VKT l_k : $\frac{\tau_{kt}D_{kt}l_k}{\sum_{kt}D_{kt}l}$	2
Moon 0% 25% 50% 75%	100%
h=1 am peak 7-9 9.4 0.118 0.000 0.015 0.043 0.159	99
h=2 pm peak 15-18 / 14.9 0.146 0.000 0.017 0.050 0.175	246
h=3 midday 9-15 26.4 0.081 0.000 0.014 0.039 0.101	38
h=4 night 18-7 20.7 0.023 0.000 0.006 0.014 0.031	0
Average tax over all periods h={1,2,3,4} 71.39 0.083 0.000 0.009 0.030 0.084	

vti

ADMIN COST OF ROAD TAX

- Fuel
- Vignette/ownership tax
- Roadside equipment: ANPR and/or DSRC
 - Admin cost 15% Sweden, 9% Norway, 35% London
 - (Parking charges in Stockholm 18%)
- GPS
 - Enforcement drives cost

PREFERRED TAX DESIGN?

- 90 percent of the revenue collected on 10 percent of the road network.
- Ekström et al. (2014) dynamically simulating optimal km pricing in County
 - 96% of the welfare gain achieved by 70 toll stations
- ANPR based congestion toll in cities in combination with time-based (car ownership/ vignette) probably internalizes most of the external cost
- Trade-off: exact targeting the externality vs administration cost

COST COVERAGE

- The optimal tax covers the public cost for road system
- But very large redistribution effects
 - large city to small city and rural
- The large city population may reject

FISCAL TAX

- Ramsey (1927)
 - Optimal commodity tax is inversely proportional to its price elasticity
- Challenged by Atkinson and Stiglitz (1976): added distributional aspects
 - Uniform tax on all final consumption goods (except Pigouvian) , if optimal income tax
 - Income tax is enough for desired redistribution effect.
 - All consumption is also much larger tax base
- Fiscal taxes on commuting introduce deadweight losses
- Horizontal equity
 - Families, rural, neighbours
- Diamond and Mirrlees (1971) advice against fiscal tax of freight transport

CONCLUSION

- Median 0.04 €/km (fuel tax 0.06 €/km). Mean at 0.09 €/km
- Enforcement of GPS systems drives admin cost.
- 90 percent of the revenue is collected on 10 percent of the road network.
- ANPR city toll combined with time-based tax preferred?
 - Heavy vehicles (non-congestion costs much larger, distance varies less)
- Trade-off between targeting the externality precisely and admin cost
- Revenue of Pigouvian tax covers public costs for road transport
 - City population may reject
- A&S advice against fiscal taxes on a single commodity, road transport a thin tax base, fiscal tax on commuting induces deadweight loss, horizontal equity