

ПУТИ ДЕКАРБОНИЗАЦИИ ГОРОДСКОЙ МОБИЛЬНОСТИ ТАШКЕНТА

Руководство для Модели городской мобильности Ташкента

Июль 2023

Supported by:

Дисклеймер

- Результаты, представленные в модели, следует рассматривать как оценку, полученную на основе наилучших имеющихся данных и информации, собранной в ходе проекта. Ее основная ценность заключается в фасилитации сравнения сценариев, а не в предоставлении точных значений определенных показателей в будущем.
- МТФ удостоверяет результаты стандартных сценариев в модели: Базовый сценарий, Сценарий текущей политики и Сценарий климатических амбиций. Эти сценарии утверждены технической группой и Министерством транспорта Республики Узбекистан. Модель позволяет вручную создавать альтернативные сценарии путем корректировки исходных данных, однако МТФ не является ответственным за результаты такой работы и не должен указываться как источник каких-либо результатов, полученных вручную.
- Использование модели, ее стандартных сценариев и любых других элементов является бесплатным.
- Данная работа выполнена по лицензии СС BY-NC-SA 4.0 Creative Commons и может свободно адаптироваться и распространяться для некоммерческого использования.
- Пожалуйста, цитируйте эту работу как: МТФ (2023), "Tashkent's Urban Mobility Model", Sustainable Infrastructure Programme in Asia Transport, OECD Publishing, Paris.

Содержание

1. Обзор проекта

2. Введение

3. Компоненты модели

- Масштаб моделирования
- Структура моделирования
- Основные функции
- Исходные данные
- Субмодели
- Подробные результаты

Обзор проекта

- В рамках SIPA, Программы устойчивой инфраструктуры в Азии, в Узбекистане проведено национальное исследование по принципу "дорожной карты".
- Исследование посвящено снижению углеродных выбросов городского пассажирского транспорта в Ташкенте с акцентом на роль общественного транспорта.
- Основными результатами этого исследования стали План улучшения городской мобильности для Ташкента и Модель городской мобильности Ташкента.
- Данное руководство призвано помочь
 пользователям в использовании модели при
 разработке местных политических решений.

<u>Получить дополнительную информацию и ознакомиться с результатами проекта.</u>

Сбор данных в сотрудничестве с заинтересованными сторонами в Узбекистане

Разработка индивидуальной стратегической модели городской мобильности для Ташкента на основе профильных данных по городу и методологии МТФ

Формулировка политических сценариев совместно с партнерами в Узбекистане: анализ существующих, планируемых и потенциальных мер

Передача модели Министерству транспорта для поддержки разработки локальной транспортной политики

Введение

Общая информация о модели

- Модель построена в Microsoft Excel (рабочие книги с поддержкой макросов).
- Она основана на **Глобальной модели городского пассажирского транспорта МТФ**, из которой взяты структура, формулы и первоначальная калибровка.
- Модель охватывает административные границы города Ташкента и опирается на данные, полученные от местных заинтересованных сторон и из открытых источников:
 - о Министерство транспорта Республики Узбекистан
 - о Агентство по статистике при Президенте Республики Узбекистан
 - о Министерство внутренних дел Республики Узбекистан
 - о АО "Тошшахартрансхизмат" (оператор общественного транспорта)
 - Международное энергетическое агентство (МЭА), Международный валютный фонд (МВФ), OpenStreetMap

Введение

Назначение модели

Это **инструмент стратегического моделирования**, позволяющий оценить влияние мер по снижению выбросов CO₂:

- о Расширение инфраструктуры (например, улучшение инфраструктуры общественного транспорта)
- Развитие общественного транспорта (например, увеличение частоты движения, оптимизация тарифов)
- о **Развитие транспорта совместного использования (шеринга)** (например, каршеринг, реформа рынка такси)
- о Ограничительные меры (например, ограничение парковки, ограничение скорости)
- Ценовые меры (например, платные дороги, тарифы на парковку)
- о **Развитие автомобильных технологий** (например, целевые показатели технологического парка для частных и общественных транспортных средств)
- Прочие меры (удаленная работа, структура землепользования).

Модель прорабатывает сценарии политических решений на период 2015-2050 гг. и оценивает соответствующую транспортную активность и выбросы.

Масштаб моделирования

Уровень детализации

Для более полного представления городской мобильности для различных сегментов рынка, модель разделяет:

- 14 видов транспорта (существующих и возможных в будущем)
- о 2 пола и 5 возрастных групп населения
- о 6 диапазонов расстояний поездки
- 5 видов топлива (бензин, дизель, электричество, СУГ/СПГ, водород)
- Шаг в 5 лет с 2015 по 2050 год

Масштаб моделирования

Виды транспорта

Активная мобильность

пешком

велосипед

байкшеринг и скутершеринг

Частные автомобили

автомобиль

мотоцикл

Общественный транспорт

метро

пригородный поезд

CAT

автобус

миниавтобус

по требованию

Каршеринг

такси

совместный транспорт

каршеринг

Масштаб моделирования

Категории населения и расстояний

10 категорий населения

6 диапазонов расстояний

5 возрастных групп

> 0-19 20-34 35-54 55-69 70+

2 пола

Женщины Мужчины 0 - 1 км 1 - 2,5 км 2,5 - 5 км 5 - 10 км 10 - 20 км 20+ км

Структура моделирования

Организация модели

Структура моделирования

Основные разделы модели

- Обложка
- Содержание данных
- Сценарий и результаты

Исходные данные модели

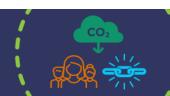
Промежуточные расчеты

Подробные результаты

Где найти

Scenarios & Results -->

Scenario Setting


Main Results

Быстрый доступ к настройке сценария и основным результатам

Ввод или корректировка значений для различных сценариев Отображение результатов и создание дополнительных отчетов

Шаблон сценария

Scenario Setting

Return to Data								
Selected scenario	Baseline			Insert your values into these columns			Suggested value range	
Measure code	Measure name	Description of value to be provided		Implementation year	Anticipated values in implementation year	Anticipated values in 2050	MIN	MAX
	Infrastruct	ture Expansion						
				2015		36.2	35	300
				2020		59.5	35	300
				2025		59.5	35	300
1	Metro network	Total network length (km)		2030		59.5	35	300
•	India naturant	Total notificity (itin)		2035		59.5	35	300
				2040		59.5	35	300
				2045		59.5	35	300
				2050		59.5	35	300
				2015		0.0	0	300
				2020		0.0	0	300
		Total network length (km)		2025	0.0		0	300
RTN	BRT network			2030	0.0		0	300
	SAT INCIDENT			2035		0.0	0	300
			2040		0.0	0	300	
				2045		0.0	0	300
				2050	0.0		0	300
				2015		8	8	30
				2020		8	8	30
		Total number of stops		2025		8	8	30
RN	Suburban rail network			2030		8	8	30
				2035		8	8	30
				2040		8	8	30
				2045		8	8	30
				2050		8	8	30
				2015		3800.0	2500 2500	10000
				2020 2025		3800.0 3800.0	2500 2500	10000 10000
		rk Total network length (km)		2025		3800.0	2500	10000
BN	Conventional bus network			2030		3800.0	2500 2500	10000
				2035		3800.0	2500	10000
		H	2040		3800.0	2500	10000	
			ŀ	2045		3800.0	2500	10000
1	Bike network	Total network length (km)		2030	100	100	100	1000
	Pedestrian network	Additional network length increase (%)		2030	0%	0%	0	100%
		sport Promotion		2000	0 70	070		100%
TS	Service improvement for mass transit	Increase in operating speed from optimised stop positio improvement, including ICT (%)	ning and service	2030	0%	0%	0%	100%

Шаблон сценария Scenario Setting

Пользователь выбирает сценарий политики в ячейке С7

Selected scenario

Baseline

Anticipated values in Anticipated values in 2050

и изменяет соответствующие значения в *столбцах F, G и H.*

- Ячейки, которые необходимо заполнить, выделены оранжевым и зеленым цветом.
- Пользователь может ввести значения для года реализации, 2050 года или для каждого года. Обратите внимание, что вводимые пользователем значения для любого сценария не влияют на значения для других сценариев.
- Пользователи могут выбрать год реализации каждой из мер. Обратите внимание, что меры BN, TI, RSI и TMR уже реализуются, но пользователи могут выбрать степень их развития в будущем.
- Для значений каждого показателя в *столбцах I и J* указан предлагаемый диапазон. Пользователям рекомендуется вводить значения в пределах этого диапазона. Если вводимые пользователем значения выходят за пределы этого диапазона, они все равно будут разрешены к вводу, но соответствующая ячейка станет красной.
- Каждая мера политики имеет справочный код меры (см. Measure Code, *столбец В*).

- Заполните общий размер сети для каждого вида транспорта и года (обратите внимание, что меры представлены в разных единицах).
- Убедитесь, что последующие годы не являются нулевыми, когда значение становится ненулевым для определенного вида транспорта (см. пример ниже).

	Infr	astructure Expansion					
			2015		36.2	35	300
			2020		59.5	35	300
			2025		65.9	35	300
MN	Metro network	Total nationals langth (lans)	2030		72.3	35	300
IVIN	Ivietro network	Total network length (km)	2035		78.8	35	300
			2040		85.2	35	300
			2045		91.6	35	300
			2050		98.0	35	300
			2015		0.0	0	300
			2020		0.0	0	300
			2025		15.0	0	300
BRTN	BRT network	Total network length (km)	2030		30.0	0	300
DIXIII	BRI Hetwork		2035		47.5	0	300
			2040	65.0		0	300
			2045	82.5		0	300
			2050	100.0		0	300
	Suburban rail network	Total number of stops	2015		8	8	30
			2020		8	8	30
			2025		8	8	30
SRN			2030		8	8	30
o			2035		8	8	30
			2040	8		8	30
			2045	8		8	30
			2050		8	8	30
		twork Total network length (km)	2015		800.0	2500	10000
			2020	3800.0		2500	10000
			2025	2500.0		2500	10000
CBN	Conventional bus network		2030	2500.0		2500	10000
			2035	2500.0		2500	10000
			2040		500.0	2500	10000
			2045		500.0	2500	10000
		T. I I	2050		500.0	2500	10000
BN	Bike network	Total network length (km)	2025	220	300	100	1000
PN	Pedestrian network	Additional network length increase (%)	2025	10%	30%	0	100%

Шаблон сценария – Технологии транспортных средств

Scenario Setting

- Меры политики: ТЕСН, СТЕСН, ВТЕСН
- Установка значений позволяет перезаписать предварительно заданные значения "по умолчанию" для сценариев развития технологий транспортных средств (задаются в **TECH**, см. описание сценариев IEA NPS/SDS в Методическом отчете).
- Укажите процентные доли технологий для парка личных автомобилей (СТЕСН) и автобусов (ВТЕСН).
- Убедитесь, что сумма долей равна 100% (ячейки будут окрашены в красный цвет, если сумма не равна 100%). В противном случае, будут использованы стандартные доли IEA NPS/SDS.

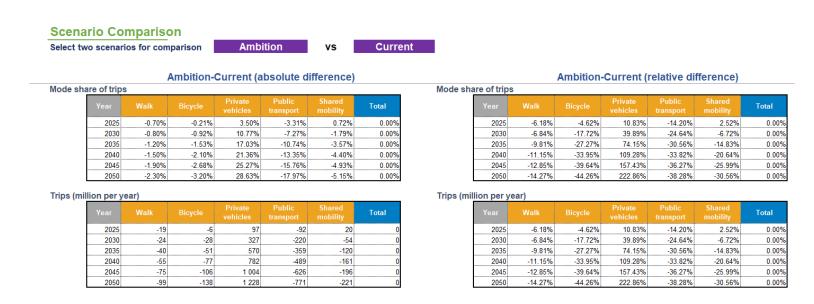
	Vehicle	Technology Development						
TECH	Vehicle fuel technology development and uptake - predefined scenarios	Trigger of two possible technology and vehicle efficiency scenarios: 0 - IEA NPS 1 - IEA SDS See the methodology note for information on these scenarios.		0			0	1 (IEA SDS)
			Gasoline		63%	40%	67%	0%
		Shares of different vehicle technologies in	Gasoline-hybrid		0%	0%	0%	0%
	Technology stock targets for car fleet	private car fleet (%). Please note that if you			1%	0%	1%	0%
		specify the shares, they will substitute	Diesel-hybrid		0%	0%	0%	0%
CTECH		the default shares of the IEA scenario.	LPG/CNG	2025	31%	25%	32%	0%
		Please make sure the sum of the shares	Hydrogen		0%	0%	0%	0%
		is 100%, otherwise the default IEA shares	Hydrogen-hybrid		0%	0%	0%	0%
		will be used.	Electric		5%	35%	0%	100%
			Total		100%	100%	100%	100%
			Gasoline		0%	0%	0%	0%
		Shares of different vehicle technologies in	Gasoline-hybrid		0%	0%	0%	0%
		bus fleet (%). Please note that if you	Diesel		63%	20%	80%	0%
		specify the shares, they will substitute	Diesel-hybrid		0%	0%	0%	0%
BTECH	bue floot	the default shares of the IEA scenario.	LPG/CNG	2025	17%	10%	20%	0%
		Please make sure the sum of the shares	Hydrogen		0%	0%	0%	0%
		is 100%, otherwise the default IEA shares	Hydrogen-hybrid		0%	0%	0%	0%
		will be used.	Electric		20%	70%	0%	100%
			Total		100%	100%	100%	100%

Отображение результатов

- Обобщенные результаты находятся на листе
 Main Results
- Подробные результаты находятся в разделе Model Outputs -->
- Для получения обобщенных результатов выполните следующие действия:
 - Выберите сценарий политики в ячейке В7
 Results for scenario: Current
 или в

 ячейке С7
 Selected scenario
 в Scenario Setting
 - о Пользователи также могут генерировать дополнительные отчеты, нажав две кнопки (Сравнение результатов сценариев и Анализ по направлениям политики)

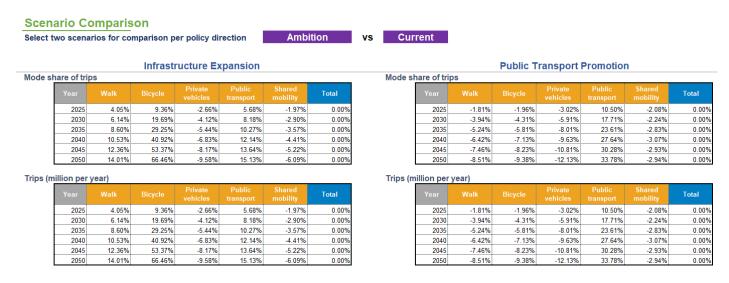
После нажатия одной из двух кнопок модель будет перезапущена. Чтобы не потерять изменения, предварительно сохраните файл.



Сравнение результатов сценариев

Generate Scenario results comparison

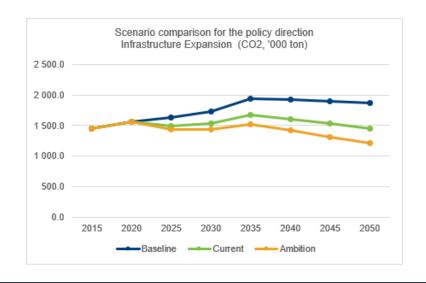
- Данный файл состоит из двух листов: Scenario Results (Результаты Сценария), содержащий обобщенные результаты по всем сценариям, и Scenario Comparison (Сравнение Сценариев), на котором пользователь может отобразить абсолютные и относительные различия между двумя выбранными сценариями.
- Ниже приведен пример **Scenario Comparison** (Сравнение Сценариев). Выбор сценария в *ячейках F3 и I3*.

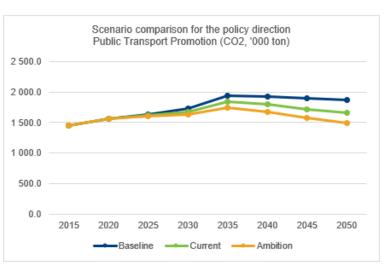


Анализ по направлениям политики

Generate Analysis per policy direction

- Этот файл состоит из пяти листов: подробные результаты соответсвущих сценариев по каждому направлению политики Baseline, Current, Ambition (Базовый, Текущий, Амбициозный), Scenario Comparison (Сравнение Сценариев), где пользователь может отобразить относительные различия между двумя выбранными сценариями, и Summary (Сводка), которая приводит обобщенные результаты и соответствующие различия по всем сценариям.
- Ниже приведен пример **Scenario Comparison** (Сравнение Сценариев). Выбор сценария в *ячейках Н3 и К3*.





Анализ по направлениям политики - Методология

Generate Analysis per policy direction

- Оценка воздействия по каждому направлению политики проводится путем сравнения двух сценариев (Текущий-Базовый и Амбициозный-Базовый), которые отличаются только параметрами конкретного рассматриваемого направления политики.
- В листе Summary (Сводка) пользователи могут найти графики, показывающие различия между тремя сценариями по каждому направлению политики (см. примеры ниже).

Где найти

Model Inputs -->

Обновление модели с учетом ввода более свежих данных или их пересмотра

Socio-economic Input

Контроль и модификация входных данных по населению, площади, землепользованию, ВВП и удаленной работе

Transport Indicators

Контроль и модификация входных данных на 2015г. по парку транспортных средств и технологиям, транспортной инфраструктуре и ценам, средним скоростям и времени поездки и т.д.

Vehicle Technology

Детальная выборка данных о технологиях и характеристиках транспортных средств из модели МЭА, скорректированных с учетом данных сценария

Sub-models Calibration

Все переменные, используемые в промежуточных расчетах. Значения калибруются на основе Глобальной модели МТФ

Социально-экономические данные

Socio-economic Input

- Население по возрастным группам и полу
- Доля населения, работающего удаленно
- Размер территории и структура землепользования
- ВВП на душу населения
- Базовый год (2015) и прогнозы до 2050 года
- Демографические и географические характеристики Ташкента основаны на официальных статистических данных Республики Узбекистан и на линейном регрессионном подходе для распространения оценок между 2020 и 2050 гг.

Пользователи могут изменять данные в этом разделе

Транспортные показатели базового года (2015) Transport Indicators

- Обеспеченность транспортной инфраструктурой (протяженность дорог по категориям, размер инфраструктуры ОТ)
- Парк транспортных средств (частные ТС, парк ОТ и такси, доля легально эксплуатируемых ТС)
- Технологии ТС (доля видов энергии для парка автомобилей и автобусов)
- Характеристики видов транспорта (скорость, время доступа и ожидания, средний коэффициент загрузки)
- Транспортные расходы (стоимость проезда в общественном транспорте, стоимость проезда в такси, стоимость топлива, стоимость парковки)
- Характер поездок (доля поездок по категориям расстояний).

Пользователи могут изменять данные в этом разделе

Технологии ТС

Vehicle technology

- Топливно-технологический состав транспортных средств, их эксплуатационные характеристики, коэффициенты загрузки, сопутствующие расходы и выбросы СО2, полученные из **Модели мобильности МЭА** (MoMo), включая **два сценария МЭА** (NPS/SDS).
- Коэффициенты загрузки для личного автомобиля обновлены на основе данных Министерства транспорта.
- Состав топлива для личного автомобиля и автобуса определяется из Scenario Setting , если указаны пользователем.
- Состав топлива для САТ, микроавтобусов, такси, совместного транспорта и каршеринга корректируется на основе коэффициентов в Sub-models Calibration
- Данные по локальным выбросам загрязняющих веществ взяты из модели ICCT Transport Roadmap Model.

Для модификации данных, приведенных в этом листе, пользователи должны быть хорошо ознакомлены с моделью. Рекомендуется изменять только таблицу "Aggregated model input" ("Обобщенные исходные данные модели").

Калибровка субмоделей

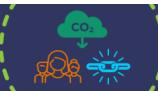
Sub-models Calibration

- Более подробная информация о каждой субмодели и ее коэффициентах приведена в Методическом отчете.
- Лист включает несколько разделов:
 - Модуль выбора вида транспорта коэффициенты для формул характеристик видов транспорта, коэффициенты влияния COVID, коэффициенты модели выбора вида транспорта, предполагаемая доступность видов транспорта по диапазонам расстояний
 - о **Характер поездок** модели распределения расстояний поездок и категорий расстояний, коэффициенты объезда по расстоянию, модель частоты поездок
 - о **Транспортное предложение** модель длины дорог, базовая контрольная скорость, ограничения дорожного пространства
 - о Затраты по видам транспорта эластичность различных затрат по отношению к ВВП на душу населения
 - о Владение транспортными средствами модель владения частными видами транспорта
 - о Прочие параметры влияние карпулинга и коэффициенты корректировки для технологий других ТС
 - Для модификации данных, приведенных в этом листе, пользователи должны быть хорошо ознакомлены с моделью. Рекомендуется сохранить копию исходных параметров.

Калибровка субмоделей. Пример: корректировка модели выбора вида транспорта

Sub-models Calibration

- Доли видов транспорта могут быть изменены путем изменения коэффициентов модели выбора вида транспорта. Результаты отображаются в Мode Share
- Увеличение/уменьшение ASC (альтернативной специфической постоянной) → увеличивает/уменьшает
 привлекательность вида транспорта → увеличивает/уменьшает его долю, независимо от значений его атрибутов
- Изменение других коэффициентов делает виды транспорта более или менее "чувствительными" к полу пользователя, а также к изменениям в атрибутах видов транспорта или в политических мерах.
- Изменять коэффициенты модели не рекомендуется без наличия данных для их подтверждения и без хорошего понимания моделирования дискретного выбора.


Mode choice model

Coefficients of the calibrated multinomial logit mode choice model, used to compute the utility functions

Mode	Mode ID	Gender	ASC
Walk	M_1	1.00	0.0
Bicycle	M_2	1.30	-2.5
Motorcycle	M_3	1.60	-2.8
Car	M_4	1.40	0.0
Taxi	M_5	0.90	-1.3
PT-Rail	M_6	0.60	-0.3
PT-Metro	M_7	0.60	0.0
PT-Bus	M_8	0.50	-0.5
PT-BRT	M_9	0.60	0.0
PT-Minibus	M_10	0.50	-0.7
Bike and scooter sharing	M_11	1.30	-1.6
Ride-sharing	M_12	0.90	-1.3
Car-sharing	M_13	1.30	-0.5
On-demand Transport	M_14	0.50	-1.0

Калибровка субмоделей. Пример: корректировка долей диапазонов расстояний

Sub-models Calibration

- Доли поездок, попадающих в каждый диапазон расстояний, можно изменить, изменив коэффициенты модели выбора диапазона расстояния. Результаты показаны в Trip Rates & Distances
- Увеличение/уменьшение ASC (альтернативной специфической постоянной) → увеличивает/уменьшает привлекательность диапазона расстояния → увеличивает/уменьшает его долю, независимо от значений его атрибутов/
- Изменение других коэффициентов делает диапазоны расстояний более или менее "чувствительными" к изменениям атрибутов.
- Изменять коэффициенты модели не рекомендуется без наличия данных для их подтверждения и без хорошего понимания моделирования дискретного выбора.

Distance category distribution model

Coefficients of the multinomial logit model used to compute the utility functions of each distance bin d: $Utility^d = \mu * (\sum_i Parameter^d_i * variable^d_i)$ The variables are slightly transformed to include threshold effects and the impact of the bike and pedestrian infrastructure scenario measures.

Distance bin	ASC	Area Coeff	Density Coeff	Land use mixture Coeff
0	0.0	-0.033	0.0012	2.70
1	0.5	-0.024	0.0009	2.10
2	2.5	-0.018	0.0007	1.90
3	0.0	0.000	0.0001	-1.80
4	0.0	0.009	-0.0015	-2.20
5	0.0	0.005	-0.0019	-4.50

Калибровка субмоделей. Пример: корректировка частоты поездок

Sub-models Calibration

- Параметры частоты поездок могут быть изменены путем изменения соответствующих коэффициентов модели.
- Результаты отображаются в Trip Rates & Distances
- Увеличение/уменьшение возрастных и гендерных коэффициентов → увеличивает/уменьшает количество поездок для определенных демографических категорий.
- При изменении других коэффициентов, дополнительные факторы, такие как ВВП или политические меры, оказывают влияние на количество поездок всех категорий в большей или меньшей степени.
- Изменять коэффициенты модели не рекомендуется без наличия данных для их подтверждения и без хорошего понимания регрессинного анализа.

Trip rate model

Teleworking Coeff	30.0
PN Coeff	7.0
BN Coeff	0.01

Variable	Category	Value
Constant	All	0.200
GDPcap	All	0.005
Gender	M	-0.050
Gender	F	0.106
Age_group	0-19	0.136
Age_group	20-34	0.240
Age_group	35-54	0.310
Age_group	55-69	0.184
Age_group	70+	0.000

Субмодели

Где найти

Intermediate steps -->

Отображает промежуточные этапы расчетов, используемые для обновления общих результатов

Scenario Parameters	Socio-economic Projection	Urban Area Descriptors	Trip Rates & Distances	Modal Attributes	Mode Share Utilities
Преобразование пользовательских сценарных данных в параметры, используемые в модели	Прогнозы численности населения и ВВП на период 2015-2050 гг.	Прогноз атрибутов транспортного предложения и характеристик землепользования на период 2015-2050 гг.	Формирование поездок по полу, возрасту и расстояниям в 2015-2050 гг.	Формирование характеристик поездок для каждого вида транспорта и диапазона расстояний в 2015-2050 гг.	Преобразование атрибутов видов транспорта и сценарных данных в показатели, используемые для расчета доли видов транспорта (скрытый лист)

Информация на этих листах может быть использована только в контрольных целях.

Изменения не рекомендуются. При необходимости, пользователи должны внести изменения в соответствующие листы исходных данных

Подробные результаты

Где найти

Model Outputs --> Mode Share PKM VKM WTT CO2 TTW CO2 NOx PM2.5 SO4

Результаты по спросу на поездки

Результаты по выбросам

Количество поездок Средние расстояния поездок Доли видов транспорта

Километры транспортных средств по видам транспорта (ВКМ)

CO2 и локальные загрязнители по видам транспорта

- По диапазону расстояний
- По полу

- По типу топлива
- По полу

МЕЖДУНАРОДНЫЙ ТРАНСПОРТНЫЙ ФОРУМ

2 RUE ANDRÉ PASCAL F-75775 PARIS CEDEX 16

КОМАНДА ПРОЕКТА

Ярослав ХОЛОДОВ

Менеджер проекта

E-mail: yaroslav.kholodov@itf-oecd.org

Маллори ТРУВЕ

Консультант по городской мобильности

Сяотон ЧЖАН

Аналитик данных

Блез ЭСТЬЕН

Стажер-аналитик по вопросам политики

Гуиненг ЧЕН

Руководитель транспортной программы

E-mail: guineng.chen@itf-oecd.org